
ANSI X3H2-95-487

ISO/IEC JTC1/SC21/WG3 DBL LHR-?

I S O

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

December 6, 1995

Subject: SQL3 Part 7: Temporal

Status: ANSI Expert's Contribution

Title: Response to LHR-043, \Fixing possible problems in SQL/T"

Version: 1

Author: Richard T. Snodgrass

Abstract: This document evaluates the changes proposed in LHR-043.

References:

1 Valid-Time Support in SQL3
2 Collection type Range YOW-025
3 Comments on SQL/Temporal YOW-155
4 Proposal for a new SQL Part | Temporal RIO-075
5 SQL/Temporal LHR-009
6 Possible problems in SQL/T LHR-042
7 Fixing some possible problems in SQL/T LHR-043
8 Response to LHR-042 ANSI X3H2-95-486
9 The TSQL2 Temporal Query Language Kluwer
10 Maintaining Knowledge about Temporal Elements CACM 11/83



2 ANSI X3H2-95-487

1 Introduction

The abstract for LHR-043 states that that document \proposes a number of changes to SQL/T that are
intended to remove some of the criticisms of YOW-125 that were listed in YOW-155 and represented as
possible problems in LHR-042." As X3H2-95-486 shows, addressing the problems listed in LHR-042 does
not require extensive changes to LHR-009. LHR-043 in fact proposes a series of more substantial additions
and changes that are unrelated to LHR-042. In particular, it shares with YOW-025 the generalization of
period to allow \the possibility of having periods (or ranges, or whatever name is considered appropriate for
such things) of other data types in the future."

2 Ranges and Time

To di�erentiate `such things' from periods as de�ned in LHR-009, let's call them by their original term:
range. A range is a convex set of values, say integers. A speci�c integer denotes a quantity of something.
Consider liters of milk. The integer 4 might denote 4 liters of milk. The refrigerator might contain a range
of 2 to 4 liters of milk.

A period is an anchored duration of time. A particular period, say 3:30pm Friday December 1, 1995
through 5:27 Monday, December 4, 1995, denotes speci�c days, hours, and minutes. Unanchored durations
are SQL intervals, an example being 3 days, 1 hour, and 57 minutes, or equivalently, 259317 minutes. SQL
intervals can be added to SQL datetimes to o�set them to a new (anchored) datetime.

The analogy of ranges to time is quite interesting. A data type like integer or oat is most similar to a
time interval. One can have 4 liters of milk or 4 days of time. A range of a data type, such as 2 to 4 liters
of milk, corresponds to an indeterminate interval [1,9], such as 2 to 4 days. We're not sure how much milk
our refrigerator contains, just as we're not sure precisely how long the car's radiator uid has been low.

Let's now consider integers representing temperatures. The temperature 7�C could represent either an
absolute temperature (i.e., cold, but not freezing) or could represent an increment of thermal entropy, which
could be added to an absolute temperature, say 15�C to get another absolute temperature, 22�C. This
analysis concludes that an integer representing a temperature can either be anchored, and thus analogous to
a datetime, or be unanchored, and thus analogous to an interval. Considering ranges of temperatures, the
range 7�C { 11�C could be analogous to an indeterminate datetime [1,9] (if the context is \how cold is it
outside?"), an indeterminate interval (if the context is \the temperature increased by 7�C to 11�C over the
course of the afternoon), or a period (if the context is \the temperature varied from a low of 7�C to a high
of 11�C today").

Indeterminate datetimes and intervals are highly useful in temporal databases. They are fully supported
in TSQL2 [1,9]. They may be associated with probability distribution functions, which would also be helpful
with ranges (e.g., there is probably only 2 or 3 liters of milk in the refrigerator).

In any case, ranges, being independent of data type, properly belong in SQL/Foundation, not in SQL/Temporal.
We encourage the authors to retarget their proposal to that base document. Also, it would be helpful to
explore the relationship between ranges and indeterminate datetimes and intervals more fully.

The remainder of the present document will consider what problems and solutions LHR-043 brings to
the speci�c issue of the period data type as de�ned in SQL/Temporal, as separate from the consideration of
the range generalization. It turns out that some of the functionality proposed in LHR-043 is already present
in TSQL2, in more generality. TSQL2 represents a consistent and integrated approach to these issues. Some
of the suggestions in LHR-043 has been incorporated (and sometimes generalized) in the changes proposed
in X3H2-95-486.

The comments will apply to the speci�c sections of LHR-043, using an identical numbering.

3 PP 1, De�nitions

Discussing the \beginning of the granule" and a \(perfectly accurate) clock" (which cannot exist) implies
a continuous ontology of time. [1,9] contain careful discussions of why TSQL2, and hence SQL/Temporal,
rejects choosing that particular time ontology.



ANSI X3H2-95-487 3

The time ontology used in a language de�nition interacts closely with granularity and indeterminacy
issues, neither of which are covered in any detail in LHR-043. TSQL2, on the other hand, incorporates
comprehensive support for both, consistent with the time ontology in SQL/Temporal.

As LHR-043 provides no reason why the time ontology in SQL/Temporal is de�cient, there is no com-
pelling reason to change it.

4 PP2, 3, 4, 7, 10, and 11

De�ning periods in terms of DATE, TIME, and TIMESTAMP add the ability to specify periods with a
precision of DAY. TSQL2 supports all granularities for the precision of a period. As one example, in TSQL2
one can de�ne MONTH periods.

4.1 Clause 4.2

Most of this concerns de�ning periods as a data type constructor, to later support general ranges.

4.2 Clause 6.1

This concerns ranges.

4.3 Clause 6.3

NEXT and PREVIOUS are general operators, and so are more appropriate for SQL/Foundation. The speci�c
need for NEXT and PREVIOUS on datetime values and LAST on periods is generally obviated in TSQL2
via open-closed periods, as discussed in more detail below.

4.4 Clause 6.4

Amajor advance in temporal databases was the recognition that periods were not closed under set operations.
This insight led to the de�nition of temporal elements, or �nite unions of periods, which were closed under
set operations. Many temporal data models and query languages utilize temporal elements.

P UNION does not in fact yield a union of two periods, if the periods are disjoint. P EXCEPT does
not in fact yield the di�erence of two periods, if one period contains another. These operators imply that
periods are sets, when in fact they are contiguous granules, not general sets.

4.5 Clause 7.1

UPTO and THROUGH allow periods to either contain or not contain their ending delimiting timestamp. In
interval calculus terminology, these reserved words support closed-closed and close-open intervals. TSQL2
allows those two variants, as well as the other two variants, open-closed and open-open (which do not contain
their beginning delimiting timestamp), for literals. If these variants are also desired via the PERIOD value
constructor, it is possible to do so by exploiting the accepted formalism of \[: : :]" (for closed-closed), \[: : :)"
(for closed-open), \(: : :]" (for open-closed), and \(: : :)" (for open-open).

4.6 Clause 7.2

The suggestions have been adopted, in X3H2-95-486.

4.7 Clause 10.2

This concerns ranges.

4.8 Clause 11.1

These changes are connected with those concerning clause 6.4, above.



4 ANSI X3H2-95-487

5 PP5: Clause 5.2 <literal>

These changes also concern the open-closed distinction, but for literals, which is already handled in a more
general fashion in TSQL2.

6 PP6 Clause 6.2 <set function speci�cation>

Clause 6.2 cannot be deleted as proposed because SUM and AVG are not permitted on periods. However,
specifying the ordering of periods does simplify things, and so GR1{3 can indeed be removed, as speci�ed
in ANSI X3H2-95-486.

7 PP8 and PP9: 6.5 <cast speci�cation>

These \corrections" are actually extensions to support ranges.

8 PP15 7.6 <meets predicate>, and others

This proposal reduces the expressive power in SQL/Temporal. As a speci�c example, the proposal eliminates
PERIOD ': : :' MEETS DATE ': : :'.

X SUCCEEDS Y is equivalent to Y PRECEDES X. We see no compelling need for another reserved
word that adds so little. Allen [10] de�nes thirteen interval operators, all of which can be expressed using
PRECEDES. One could expand the list of reserved words quite a bit to add these operators, with no increase
in expressive power.

9 PP12, PP13, and PP14

This proposal reduces the expressive power in SQL/Temporal. As a speci�c example, the proposal eliminates
PERIOD ': : :' OVERLAPS DATE ': : :'.

10 Expanding a period into a set

Even if a function in useful in de�ning other operations, that does not imply that the function itself should
be included in the language.

11 Summary

Concerning LHR-043, our reactions to these proposals can be summarized as follows.

� Ranges should be retargeted for SQL/Foundation, and the analogy with indeterminate time intervals
and datetimes exploited.

� The existing time ontology in SQL/Temporal should be retained.

� If further exibility in specifying di�erent granularities for the precision of a period is desired, TSQL2
provides much more generality than does LHR-043.

� NEXT, PREVIOUS, LAST, UPTO and THROUGH can all be supported in a manner more consistent
with the accepted formalism of interval calculus by adopting TSQL2's approach, which also is more
general.

� Set operators on periods encourages the invalid notion that periods are general sets.

� Some of the proposed changes reduce the expressive power of SQL/Temporal, without justi�cation.



ANSI X3H2-95-487 5

� Some of the new operators, such as SUCCEEDS and EXPAND, are insu�ciently motivated.

There was one extension proposed that goes beyond the constructs in TSQL2: it might be useful for the
PERIOD constructor to indicate which type of period is desired, in a manner similar to period literals.


