Wireshark Developer’'s Guide
For Wireshark 2.1

UIf Lamping <ul f. | anpi ng[AT] web. de>
Luis E. Ontanon <l ui s[AT] ont anon. or g>
Graham Bloice <gr aham bl oi ce[AT] tri hedral . conp

Wireshark Developer’s Guide: For Wireshark 2.1
by UIf Lamping, Luis E. Ontanon, and Graham Bloice
Copyright © 2004-2014 UIf Lamping, Luis E. Garcia Ontanon, Graham Bloice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License, Version 2 or any
later version published by the Free Software Foundation.

All logos and trademarks in this document are property of their respective owners.

I o= Y] o PSP viii
2. Who should read this dOCUMENE?oeiiiiiiiiiiii et viii
3. ACKNOWIEAGEMENLSiiiieii e e e e e e e e e e aeas viii
4. ADOUL thiS AOCUMENLeeviiieeiiiie e e e et eeaa e viii
5. Where to get the latest copy of this document?coocviiiiiiiiii i iX
6. Providing feedback about this docUuMENtcocoviiiiiiiiii e iX
I. Wireshark Build ENVIFONMENTuiiiiiiiiieiiiiiie et e e e e e e e e e e 1
IO [oo [0 1o T P 2
SO 1 11 oo 1 1 o o PSPPSRI 2

1.2, What iISWITESharK? ... 2

1.3. Supported Platformsoiiiiii e 2
0 1 U 1 G SRR 2

0 3 11 G N 2

1.3.3. Microsoft WINGOWSuiiiiiiieeiii e e e e 3

1.4. Development and maintenance of Wiresharkccooovviiiiiiiniiiinneee, 3
1.4.1. Programming 1anguageS USEdccevuuieiiiieiiiieieiieeeiie e e e eei e eaeeens 3

1.4.2. Open SOUrCE SOftWEIEueveeiiiei e e e e 4

1.5. Releases and distribULIONScooevuiiiiiiiiiee e 4
1.5.1. Binary distributionsooiiiiiiiiii e 4

1.5.2. Source code diStribULIONSuieeiiiiiieiii e 5

1.6. Automated Builds (BUIlADOL)coovviiiiiiiiiic e 5
BT Y0 1Y | - o == 5

1.6.2. What does the BUildbot dO?uvvviiiiiiiiiiiiiieeeii e 5

1.7. Reporting problems and getting helpcoovviiiiiii i, 6
17,0 WEDSITE ettt 6

7.2 WK o 6

L 7.3 FAQ o 6

L1.7.4. OtNEI SOUMCES ..eevvueiiiiiiee et e ettt e et e et s e e a e et e e e e e e e ennes 7

175 Maling LIStS covuniiiiiii e e e e 7

1.7.6. Bug database (BUGZilla)cc.ovviiiiiii e 8

L7.7. Q&A S et 8

1.7.8. Reporting Problemscocvviiiii e 8

1.7.9. Reporting Crashes on UNIX/Linux platformsc.ccoeeeviviviiieeinnenn, 8

1.7.10. Reporting Crashes on Windows platformsccoceeeviviiiiciiinccinen, 9

A @ U o = 11 o PN 10
2.1 UNEX: INSEAIALON oevieiiii e 10

2.2. Win32/64: Step-by-Step GUITEcccvviiiiiiii e 10
22.1. Install POWErShellooovviviiiiiii 10

2.2.2. Optional: Install Chocolateycccvvviiiiiiiiiiiieiie e, 10

2.2.3. Install Microsoft C compiler and SDKccooeviiiiiiiiiiin e, 10

224, INSEAl Qb e 11

2.25. INStall CYQWIN .uniiice e 11

2.26. Install PythOncoiiii e 12

227, INSEAL GIt e 12

2.3, INStAll CMBKE ... 13
2.3.1. Install and Prepare SOUMCESccuuevuiieieiieeii e e e e e e e e e aaes 13

2.3.2. Open aVisua Studio Command Promptccccoeeiiveiiiiiiiieeieeennnn, 14

2.3.3. Generate the build fIleSc.uiiiiiiiii i 15

2.3.4. BUIld WITESharkoieiiiiiiieiiiii e 15

2.3.5. Debug ENVIronment SEIUPcovveiiiieiiiieeii e e 16

2.3.6. Optional: Create User's and Developer's Guideccoeevvveviineennnn. 16

2.3.7. Optional: Create a Wireshark Installerccocooivieiiiiiiiiiiiiees 16

3. Work with the Wireshark SOUICESooovviiiiiiiiiii i 18
130 I 1 o o [0 1o o ORI 18

3.2. The Wireshark Git r&POSITONYcovueiiiieiiiieeiii e e e e e e 18
3.2.1. The web interface to the Git repoSItorycoocevveviiieiiiiieiiieeee e, 18

3.3. Obtain the Wireshark SOUICESuuuiiiiiiiiieiiiiii e 19

Wireshark Developer’s Guide

3.3.1. Git over SSH or HTTPS L.ouiiiiiiciciie e 19
3.3.2. Git WED INTEITaCE ..o 20
3.3.3. Buildbot Snapshotscoceviiiiiiiii e 21
3.3.4. REIEESEU SOUMCES ...oevviieiiiiii ettt e e e eaenns 21

3.4. Update the WiIreshark SOUICESccivviiiiiiiiii i e e 21
3.4.1. Update USING Gt covvueiiiiiiiiiiiii e e e e e e e e 21
3.4.2. Update Using Source Archivescccouoieiiiiiiiiieiiie e 22

3.5, BUIlA WITESNaIK ...vevvvvviiii i e e e e s 22
3.5.1 Building 0N UNiX ...ccouiiiiiiiiiicii e 22
3.5.2. WINB2 NALIVE ..evvviiieeeiieieiee e e e e e e e e e e e e e s 22

3.6. Run generated WIresharkcociuuiiiiiiiiiii e 23
G300 I U T T 1 23
3.6.2. WIN32 NALIVE ..evvviiieeeiieeeiee e e e e e e e e e e e e an s 23

3.7. Debug your generated Wiresharkcccoooiiiiiiiiiiiiii e, 23
G %0 T U T T 1 23
3.7.2. WIN32 NALIVE ..vvveiiieeeeieeiiie et e e e e e e e e e e e e e s 23

3.8. Make changes to the Wireshark SOUrCEScocovvveiiiiiiiiiiciiieec e, 24
3.9. Contribute Your ChaNGESoiiii e e e e 24
3.9.1. Sometips for agood PatChovevviiiiiiiiie e 24
3.9.2. Code REQUITEMENEScivieiii e e e e e e e e 25
3.9.3. Uploading Your ChangeScccueiiiiiiiiiieeie e e e e 26
3.9.4. Backporting @ Changecc.uviiiiiiiiiicce e 26

3.10. Apply a patch from SOMEONE ElSEcvvuiii e 27
3.10.1. USING PACH «..covviiici e 27

3.11. Binary PaCKagingu.eeeueeunieeeieeiieeeei e e e e e et eeat e e e e e e e e e et e e e 27
3.11.1. Debian; .deb packagesccoveviieiiiieii e 27
3.11.2. Red Hat: .rpm PaCKagESuivveeeiiieiii e e e e e e 28
3.11.3. OS X: .dmMQ PaCKagESuvvviieiieee e 28
3.11.4. Win32: NSIS .eXe inStallerccovvvviiiiiiiiieeeeeeeeee e 28
3.11.5. Win32: PortableApps .paf.exe packagecccvvveviiieeirieiiiieeiieeeaannn, 29

R oo B = = oot PSP 30
g I g1 o [o ' o PR 30
4.2. WIndows POWErShElluuiiiiiiiicc e 30
G T 01110 w0 - (=Y PPN 30
4.4, WINAOWS. CYOWIN L..ieiiiiiiiei e e e e e e e e e e e e e e e e et e e et e e aaeeeens 31
4.4.1. Installing Cygwin using the Cygwin installerccoooeviiiiiiienis 31
4.4.2. Add/Update/Remove Cygwin Packagesccoevvveviiieeiiiieiiieeeieeen, 31
4.4.3. Installing Cygwin using Chocolaeyc.couveiiiiiiiiieeiii e, 32

4.5. GNU compiler toolchain (UNIX ONlY)oiiiniiiiiiii e 32
4.5.1. gcc (GNU compiler collection)cc.ovvvviiiiiiiiiiii e, 32
4.5.2. gdb (GNU project debugger)coovevieiiiiiiiie e 32
4.5.3. ddd (GNU Data Display DebUgQQEr)ccvvveviiiiiiiieiiiieeeeee e, 33
4.5.4, MaKe (GNU MaKE)cevvvriiiieeeeiiiiiiiiie e e e e e e e e e 33

4.6. Microsoft compiler toolchain (Windows Native)ccoovvvviiiiiiieiiineeineeennn. 33
4.6.1. Toolchain Package AIRErNaLIVEScccuviiiiiiciii e, 33
4.6.2. cl.exe (C COMPILEL) ovvniiiiiei e 34
4.6.3. [INK.EXE (LINKEN) ...iieeiiii i 35
4.6.4. C-Runtime "Redistributable” FileScoovvvviiiiiiiiiiiie, 35
4.6.5. Windows (Platform) SDKcccouiiiiiiiiiiiiiii e 36
T o Y T = o T 36
4.6.7. DEDUGOES ...eveniiii e e 37
B« o PP 37
4.7.1. UNIX and Cygwin: GNU bashccuiiiiiiiiiiiiiiie e, 37
A.7.2. WINAOWS NBLIVE: ...eiiiiiieeeiii et e e e et e eeeain e eees 38

A.8. PYtNON ..oeeii i 38
4.9, PEIl oo e aaaan 38
4.9.1. UNIX and Cygwin: Perlccovviiiiiiiiieec e 38
0= PP 39

Wireshark Developer’s Guide

4.10.1. UNIX and Cygwin: SEcovvvviiiiiiieeeieeeeiiies e e e e et eeeeeaaaees 39
4.10.2. WIindows Native: SBAuuiviiiiieiiiii e 39

O 1= oo SRR 39
4.11.1. UNIX or Cygwin: DISONcivuieiiieiiiiieiiieee e e e e e e e 40
4.11.2. Windows Native: Win flex-bison and bisonccccoeveviiiininnnnnnn. 40

O = PR 40
4.12.1. UNIX or Cygwin: FIEX ..cvvuiiiiiieeiii e e e e 40
4.12.2. Windows Native: Win flex-bison and flexcccooovviiiiiiiiiinniiinnnnn. 40

B T 1) o = o TR 41
4 R O 1 N1 Qo G @1 o 11V ¢ o 1 N 41
4.13.2. WIindows NAIVE: Qit ...covuiiiiieiiiiecie e e 41

4.14. Git Powershell Extensions (Optional)ccoovvieiiiiiiiiiieiie e 41
4.15. Git GUI client (Optional)eiviiieiii e e 41
4.16. patCh (OPLONAL) ...covniiii e 42
4.16.1. UNIX and Cygwin: PaiChcccvuiiiiiiiiiiie e e e 42
4.16.2. WIindows Native: PaChccivviiiiiiiiiii e 42

4.17. WIindows: NSIS (OPtioNal)oevuniiiiiiiiiii e ee e e e e 42
4.18. Windows:. PortableApps (0ptional)cc.veviiiiiiiieiiie e 42
B, Library REFEIENCEciviiiiii e e e e e e e e 44
o3 I [oo (0o 1o o ORI 44
5.2. Binary library fOrmatsoooviiiiiiiiiie e 44
o328 TR U 1 44
5.2.2. WIN32: MSVC ...ttt e e e e e e aaaaes 44
5.2.3. WIN32: CYQWIN GCC .vuuiirneiiieeiieeiieeee e e eeatneeete e st e e eateeeeaneeeennas 44

5.3. Win32: Automated library downloadcocoiiiiiiiiiiiiiic e, 44
ST P 45
SN O U 1 S 45
5.4.2. WIN32 MSVC ..ottt ettt e e e e e a e e e s 45

5.5. GTK+/ GLib/ GDK / Pango/ ATK / GNU gettext / GNU libiconv 45
ST 0 T U1 P 45
5.5.2. WIN32 MSVC ..ottt e aea e e e s 45

5.6. SMI (OPtIONaI) ...vuiiiiiii e 45
ST 10 L U1 P 45
5.6.2. WIN32 MSVC ..ottt e e a e e e 46

B.7. C-areS (OPLIONAL) ...ivviiiii e 46
ST 50 T U 1 46
B5.7.2. WIN32 MSVC ..ottt ettt e e e e e e e e s 46

5.8. ZIID (OPtiONal) ...vuieicii e 46
oS L U1 46
5.8.2. WIN32 MSVC ..ooiiiiiiii ettt eea e e e s 46

5.9. libpcap/WiIinPcap (Optional)c...veiiiiiiiiiecii e 46
5.9.1. UNiX: HBPCAD «..ivvieii e 46
5.9.2. WIn32 MSVC: WINPCADcvvvniiieeeiiieiiiiis e e e e ee et aeeeeeeaaennnns 46

5.10. GNUTLS (OPLONA) ..uuiiiiiiiiieei e e e e e e 47
S50 I L U 1 PO 47
5.10.2. WIN32 MSVC ..ottt e e e et e s e e e e e aaaanne 47

5.11. GCrypt (OPtIONaL) ..ceveeeiieii e 47
S 0 L U 1 PP 47
5.11.2. WIN32 MSVC ..ottt e et e e e e e e aaanne 47

5.12. Kerberos (Optional)c.ueiiiieiiieci e 47
ST 20 T U 13 PSP 47
5.12.2. WIN32 MSVC ..ottt e e e e e e e e e eaanne 47

5.13. LUA (OPLIONA) covuiiiiieiiieiie e e e e et e e e e e aaaas 47
ST 1 L U 1 PP 47
5.13.2. WIN32 MSVC ..ottt e et e e e e e aeannne 47

5.14. PortAudio (OPLIONal)iiiiiieiiii e 48
ST L U 1 PSS 48
5.14.2. WIN32 MSVC ..ottt e e e n e e e e e e eaanne 48

Wireshark Developer’s Guide

5.15. GEOIP (OPLIONAL)eviiiiiiiii e e e e 48
oI T8 I U) PRSP 48

5.15.2. WIN32 MSVC ..oiiiiiiii et 48

5.16. WinSparkle (0ptional)cveiiiiiiiiiii e 48
5.16.1. WIN32 MSVC ..oiiiiiii et 48

[1. Wireshark DEeVEIOPIMENLcouiiiiiii i e e e e e e e e e e et e e e ean s 49
6. HOW WIreshark WOTKSccuuiiiiiiiieii et a e 50
(30 I 1 oo (0o 1o o PPN 50

B.2. OVEIVIEIW .ooutieiiiiii ettt e e e e e et e e e et e e e eaa e e e eaan e e eeanns 50

6.3. Capturing PACKELSevvuiiiieei e e e e e e e e e e e e e eaens 50

B.4. CaptUre FIlBS .. oeuiiii e e 51

6.5, DISSECE PACKELS ..uiiieiii et e e e e e e e e e e e e e e e e e e e 51

8 111 (oo (8o (o o PR 52
7.1, SOUICE OVEIVIEW ..euvuiieeiiii i eeeiii s e e ettt e e e et s e e et s e e e et s e e e eataeeeeataeeeenenaaeees 52

7.2, COUING SEYI .uniiiiii e 52

7.3. The GLIb liBrary ..o 52

T = o (= A o= o 11 1 PPN 53
8.1. How to add a new capture type to libpcapccoovvviieiiiiiii e, 53

9. PaCKet dISSECHION ...vuiiiiiiii e e 54
9.1, HOW 1t WOTKS ...t et e e e et e e e 54

9.2. Adding @ basiC diSSECIONccvuiiiiciii e e 54
9.2.1. Setting Up the diSSECLONvviiiiieii e 54

9.2.2. Dissecting the details of the protocolccooveviieiiiiiies 56

9.2.3. Improving the dissection informationc.cccoeeeiiiiiiiieeiiees 59

9.3. How to handle transformed dataooevveiiieiiiiiiei e 61

9.4. How to reassemble split PaCKELScc.vuiviiieiiii e 62
9.4.1. How to reassemble split UDP packetsccoocvvvvviiiiiiiiiieciieeeiee, 62

9.4.2. How to reassemble split TCP PacketScccovvveviiiiiiiieiiiicceeeies 65

9.5. HOW 10 tap PrOtOCOIS ...cvvniiii e e e e e e e 66

9.6. HOW tO produce pProtOCOl SLALSuvevvueiiiieiiiieeeiie e e e ee e e e e s e e e eeanaeens 67

9.7. HOW 1O USE CONVEISALIONSeeiiiiieeiiii e et e e et e e e e et e e e et e e e e aea s 68

9.8. idlI2wrs: Creating dissectors from CORBA IDL fileS......c.cccoveiiiiiiiiiiiiiieeennn, 68
9.8. 1. WHEE 1S T2 1oiiiiiiieeiii et e 68

9.8.2. Why dO thiS? . ..eeiiiiiii e 69

9.8.3. HOW 10 USE IAI2WI'S ..vuiiiiii et 69

O.8.4. TODO ...ttt et e e e 70

9.8.5. LIMItAHIONS ...ievviieeieiiieee ittt et e e e e e e e eaans 70

LSS T [=~ PP 70

10. Lua Support in WIresharkcooouuiiiiiiiiii e e 71
050 1 1 oo [0 o IO 71

10.2. Example of Dissector Written in LUcovevnieiineiiiieciii e eec e eaiees 71

10.3. Example of Listener Written in LUacccoeuieiineiiiieiiin e neeee e 72

11. Wireshark’s Lua APl Reference Manualccooovvviiiiiiiiiiiiiiii e 74
11.1. Saving CaptUre fIlES ...covuiii e 74
00 0t T I 11 ¢ = PP UPRPRPTPRN 74

11.1.2. PSEUAOHEBAEYvvviiiiiiieiei e 75

11.2. Obtaining diSSECHION Alccvuiiiiieii e e e e e 76
2 O = o P 76

1122, FIEAINTO tuueiiiii e e 77

11.2.3. Global FUNCLIONSciieiiieceie e 80

S A 10] = U oo 1 PP 80
N T . oo) o PSPPI 80

11.3.2. TEXEWINGOW ..t e e 81

11.3.3. Global FUNCLIONSeiiviiieceii e 84

11.4. Post-dissection packet analYSiScouuiiiinieiiiecie e 86
O I T 1= = O 86

11.5. Obtaining packet iNfOrMationoeeiiiiiiiiieii e e 88
15,0 AAIrESS ..o 88

Vi

Wireshark Developer’s Guide

11.5.2. COlUMN Louiiiiiiii e e e et e e e e e eeaen 88
1153, COlUMNS vttt e et s e e et r e e e eab s e e e eaanneeaees 89
T A 1S I 0 PSP 90
TSI = T o) (o TP 91
11.5.6. PrivateTable .coooveieiii e 94

11.6. Functions for new protocols and diSSECtOrScccvuivivieiiiieciiiece e, 94
T B T o (o P 95
11.6.2. DiSSECIOITADIE ...ieiiii e e e e e 96
108,38 PrEf ot 98
L1184, PrEfS oottt 100
GRS T . o (o TP 100
11.6.6. ProtOEXPEIT ...oviiiieiii e 102
11.6.7. ProtOFTEId ... 103
11.6.8. GlObal FUNCLIONSuiiiiiiiciciii e 113

11.7. Adding information to the diSsection treeccoeevviiiiiiiiiiii e 114
A T I == 1= 1 o PSP 114

11.8. Functions for handling packet datacccoveiiiiiiiiiiie e 120
B Y (=T 1 - Y PP 120
1182, TUD e 123
11.8.3. TVDRANGE ..eevvieeiiii et aaens 125

11.9. Custom file format reading/Writingccooeeviiieiiiiiiii e 131
12.9.1. CapturelNfO ..ovueveei e 131
11.9.2. CapturelNfOCONSEvueieeece e e 133
1193, FIlE oo 134
11.9.4, FleHANAIEroveeiiiiee e 136
12.9.5. FrameINfOceeeii e 140
11.9.6. FramelnfOCONSEccuuiieiieiiii e 141
11.9.7. Global FUNCLIONSuiiiiiiieeieii e 143
11.10. Directory handling fUNCLIONSiiiiiiiiii e 143
00 0 5 O L SO PPRTRSPPP 143
I O 1 VA W T TP 146
0 0 O 7 o = g T 1 PR 146
11.12. Handling 64-bit INTEJErScuuiiiiiiiii e e e 148
0 o O 1) 7 PSP 148
L1122, UINEBA et e e e e et e e e e e e e 154
11.13. Binary encode/decode SUPPOITccuuiiiiiieiiii e e 160
0 30 S ¥ o PP 162
11.14. GLib Regular EXPreSSIONSccuuuieiieeiiiieeieeeiee et eeeee st e et e eaaeeaenns 163
O o T PP 164

12, USEr INEEITACE «.voeeeee e e e 171
22 O 1 1o o [0 1o I PSP 171
12.2. The Qt Application Frameworkccocouiiiiiiiiiiiiciin e 171
12.2.1. SoUrce Code OVEIVIEWuuieeiiiiieeiiii e e et e e 171
12.2.2. Coding Practices and Naming Conventionscccoeevvvvevvnennnnn. 172
12.2.3. OthEr ISSUES ..vuueeiiiiie ettt e e e e eeeet e eenes 173

12.3. The GTK TIBIary .ooeiieiei i 173
12.3. 1. GTK VEISION 2.X eeeiiiiieeieiiiee et e e e et e e et e e e et e e e et e e eaneas 173
12.3.2. GTK VEISION 3X eeeiiiiieeiiiiiieeetiiie e e et e e et e e e et e e et e e e e aneas 174
12.3.3. Compatibility GTK VErSIONScccuiiiiiieiiieeiiiieriiee e e e 174
12.3.4. GTK resources on the Webcooovviiiiiiiiiiii e, 174

12.4. GUI Reference dOCUMENESiiiiiiieeeeie e 174
12.5. Adding/EXtending Dialogsuevvuniiiiiieiiiiecie e e e e 175
2 SR VAY T (o 1= o= oo 175
12.7. Common GTK programming pitfalscccoooiiiiiiiiiii e 175
12.7.1. Usage of gtk_widget_show() / gtk widget show_al() 175

13. This Document’s LiCenSe (GPL)ccvuiiiiiiiii e e e e e e e 176

vii

Preface

1. Foreword

This book tries to give you a guide to start your own experiments into the wonderful world of
Wireshark development.

Developers who are new to Wireshark often have a hard time getting their development environment
up and running. Thisis especially true for Win32 developers, as alot of the tools and methods used
when building Wireshark are much more common in the UNIX world than on Win32.

Thefirst part of this book will describe how to set up the environment needed to develop Wireshark.
The second part of this book will describe how to change the Wireshark source code.

We hope that you find this book useful, and look forward to your comments.

2. Who should read this document?

Theintended audience of this book is anyone going into the development of Wireshark.

This book is not intended to explain the usage of Wireshark in general. Please refer the Wireshark
User’s Guide about Wireshark usage.

By reading this book, you will learn how to develop Wireshark. It will hopefully guide you around
some common problems that frequently appear for new (and sometimes even advanced) developers
of Wireshark.

3. Acknowledgements

Theauthorswould liketo thank thewhole Wireshark team for their assistance. In particular, theauthors
would like to thank:

e Gerald Combs, for initiating the Wireshark project.

e Guy Harris, for many helpful hints and his effort in maintaining the various contributions on the
mailing lists.

» Frank Singleton from whose README. i dl 2wr s Section 9.8, “idl2wrs. Creating dissectors from
CORBA IDL files” isderived.

The authorswould also like to thank the following people for their hel pful feedback on this document:
e XXX - Please give feedback :-)

And of course a big thank you to the many, many contributors of the Wireshark development
community!

4. About this document

This book was developed by Ulf Lamping and updated for VS2013 by Graham Bloice
Itiswritten in AsciiDoc.

Y ou will find some specially marked partsin this book:

viii

https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
mailto:ulf.lamping[AT]web.de
mailto:graham.bloice[AT]trihedral.com

Preface

Thisisawarning

Y ou should pay attention to a warning, as otherwise data loss might occur.

Thisisanote

A note will point you to common mistakes and things that might not be obvious.
Thisisatip
Tipswill be helpful for your everyday work developing Wireshark.

5. Where to get the latest copy of this
document?

The latest copy of this documentation can always be found at: https://www.wireshark.org/docs/ in A4
PDF, US letter PDF, single HTML, and chunked HTML.

6. Providing feedback about this document

Should you have any feedback about this document, please send it to the authors through wireshark-
dev[AT]wireshark.org.

https://www.wireshark.org/docs/
mailto:wireshark-dev[AT]wireshark.org
mailto:wireshark-dev[AT]wireshark.org

Part |. Wireshark Build Environment

Wireshark Build Environment

Thefirst part describes how to set up the tools, libraries and source needed to generate Wireshark and how to do
some typical development tasks.

Chapter 1. Introduction

1.1. Introduction

This chapter will provide you with information about Wireshark development in general.

1.2. What is Wireshark?

WEell, if youwant to start Wireshark development, you might already know what Wireshark isdoing. If
not, please have alook at the Wireshark User’s Guide, which will provide alot of general information
about it.

1.3. Supported Platforms

Wireshark currently runs on most UNIX platforms and various Windows platforms. It requires Qt,
GLib, libpcap and some other librariesin order to run.

As Wireshark is developed in a platform independent way and uses libraries (such as the Qt GUI
library) which are available for many different platforms, it's thus available on a wide variety of
platforms.

If abinary packageis not available for your platform, you should download the source and try to build
it. Please report your experiences to wireshark-dev[AT]wireshark.org.

Binary packages are available for the following platforms along with many others:

1.3.1. Unix

Apple OS X

* FreeBSD
« HP-UX
* IBM AIX
* NetBSD
e OpenBSD

* Oracle Solaris

1.3.2. Linux

Debian GNU/Linux

» Ubuntu

» Gentoo Linux

* IBM $/390 Linux (Red Hat)
» Mandrake Linux

e PLD Linux

https://www.wireshark.org/docs/
mailto:wireshark-dev[AT]wireshark.org

Introduction

1.3.3.

* Red Hat Linux
* Rock Linux
e Slackware Linux

e Suse Linux

Microsoft Windows

Wireshark supports Windows natively via the Windows API. Note that in this documentation and
elsewhere we tend to use the terms “Win32”", “Win”, and “Windows” interchangeably to refer to the
Windows API. Wireshark runs on and can be compiled on the following platforms:

* Windows 10/ Windows Server 2016

* Windows 8.1 / Windows Server 2012 R2

Windows 8 / Windows Server 2012

Windows 7 / Windows Server 2008 R2
» Windows Vista/ Windows Server 2008

Development on Windows XP, Server 2003, and older versions may be possible but is not supported.

1.4. Development and maintenance of
Wireshark

1.4.1.

Wireshark was initially developed by Gerald Combs. Ongoing development and maintenance of
Wireshark is handled by the Wireshark core developers, a loose group of individuals who fix bugs
and provide new functionality.

There have aso been a large number of people who have contributed protocol dissectors and other
improvements to Wireshark, and it is expected that thiswill continue. Y ou can find alist of the people
who have contributed code to Wireshark by checking the About dialog box of Wireshark, or have a
look at the https.//www.wireshark.org/about.html#authors page on the Wireshark web site.

The communi cation between the developersis usually done through the developer mailing list, which
can be joined by anyone interested in the development activities. At the time this document was
written, more than 500 persons were subscribed to this mailing list!

It is strongly recommended to join the developer mailing list, if you are going to do any Wireshark
development. See Section 1.7.5, “Mailing Lists’ about the different Wireshark mailing lists available.

Programming languages used

Most of Wireshark isimplemented in plain ANSI C. A notable exception is the code in ui/qt, which
iswritten in C++.

Thetypical task for anew Wireshark developer isto extend an existing, or write anew dissector for a
specific network protocol. As (almost) any dissector iswrittenin plain old ANSI C, agood knowledge
about ANSI C will be sufficient for Wireshark development in almost any case.

So unless you are going to change the build process of Wireshark itself, you won’t comein touch with
any other programming language than ANSI C (such as Perl or Python, which are used only in the
Wireshark build process).

https://en.wikipedia.org/wiki/Windows_API
https://www.wireshark.org/about.html#authors

Introduction

1.4.2.

Besidethe usual toolsfor devel oping aprogramin C (compiler, make, ...), the build process uses some
additional helper tools (Perl, Python, Sed, ...), which are needed for the build process when Wireshark
isto be build and installed from the released source packages. If Wireshark isinstalled from a binary
package, none of these helper tools are needed on the target system.

Open Source Software

Wireshark is an open source software (OSS) project, and is released under the GNU General Public
License (GPL). Y ou can freely use Wireshark on any number of computersyou like, without worrying
about license keys or fees or such. In addition, al source code is freely available under the GPL.
Because of that, it isvery easy for people to add new protocolsto Wireshark, either as plugins, or built
into the source, and they often do!

You are welcome to modify Wireshark to suit your own needs, and it would be appreciated if you
contribute your improvements back to the Wireshark community.

Y ou gain three benefits by contributing your improvements back to the community:

 Other people who find your contributions useful will appreciate them, and you will know that you
have helped people in the same way that the developers of Wireshark have helped you and other
people.

e The developers of Wireshark might improve your changes even more, as there's aways room for
improvement. Or they may implement some advanced things on top of your code, which can be
useful for yourself too.

» The maintainers and developers of Wireshark will maintain your code as well, fixing it when API
changes or other changes are made, and generally keeping it in tune with what is happening with
Wireshark. So if Wireshark is updated (which is done often), you can get a new Wireshark version
from the website and your changes will already be included without any effort for you.

The Wireshark source code and binary packages for some platforms are all available on the download
page of the Wireshark website: https.//www.wireshark.org/download.html.

1.5. Releases and distributions

1.5.1.

The officially released files can be found at: https.//www.wireshark.org/download.html. A new
Wireshark version isreleased after significant changes compared to the last rel ease are completed or a
serious security issue is encountered. The typical release schedule is about every 4-8 weeks (although
this may vary). There are two kinds of distributions: binary and source; both have their advantages
and disadvantages.

Binary distributions

Binary distributions are usually easy to install (as simply starting the appropriate file is usualy the
only thing to do). They are available for the following systems:

» Windows (.exe file). The typical Windows end user is used to getting a setup.exe file which will
install al the required things for him.

» Win32 PAF (.paf.exefile). Another Windows end user method isto get a portable application file
which will install al the required things for him.

» Debian (.deb file). A user of a Debian Package Manager (DPKG) based system obtains a .deb file
from which the package manager checks the dependencies and installs the software.

* Red Hat (.rpmfile). A user of a RPM Package Manager (RPM) based system obtains an .rpm file
from which the package manager checks the dependencies and installs the software.

https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

Introduction

1.5.2.

e OS X (.dmg file). The typical OS X end user is used to getting a .dmg file which will install all
the required things for him.

» Solaris. A Solaris user obtains a file from which the package manager (PKG) checks the
dependencies and installs the software.

However, if you want to start developing with Wireshark, the binary distributionswon’t be too hel pful,
as you need the source files, of course.

For details about how to build these binary distributions yourself, e.g. if you need a distribution for a
special audience, see Section 3.11, “Binary packaging”.

Source code distributions

It's still common for UNIX developers to give the end user a source tarball and let the user compile
it on their target machine (configure, make, make install). However, for different UNIX (Linux)
distributions it's becoming more common to release binary packages (e.g. .deb or .rpm files) these

days.

Y ou should use the released sources if you want to build Wireshark from source on your platform for
productive use. However, if you going to develop changes to the Wireshark sources, it might be better
to use the latest GIT sources. For details about the different ways to get the Wireshark source code
see Section 3.3, “Obtain the Wireshark sources’.

Before building Wireshark from a source distribution, make sure you have al the tools and libraries
required to build. The following chapters will describe the required tools and libraries in detail.

1.6. Automated Builds (Buildbot)

1.6.1.

1.6.2.

The Wireshark Buildbot automatically rebuilds Wireshark on every change of the source code
repository and indicates problematic changes. Thisfreesthe devel opersfrom repeating (and annoying)
work, so time can be spent on more interesting tasks.

Advantages

» Recognizing (cross platform) build problems - early. Compilation problems can be narrowed down
to afew commits, making afix much easier.

» "Headlth status' overview of the sources. A quick look at: https://buildbot.wireshark.org/wireshark-
master/ gives agood "feeling" if the sources are currently "well". On the other hand, if al is"red",
an update of a personal source tree might better be done later ...

» "Uptodate" binary packagesare available. After achange was committed to the repository, abinary
package/ installer is usually available within afew hours at: https.//www.wireshark.org/downl oad/
automated/. This can be quite helpful, e.g. a bug reporter can easily verify a bugfix by installing
arecent build.

» Automated regression tests. In particular, the fuzz tests often indicate "real life" problems that are
otherwise hard to find.

What does the Buildbot do?

The Buildbot will do the following (to a different degree on the different platforms):
* Check out from the source repository
* Build

« Create hinary packages and installers

https://buildbot.wireshark.org/wireshark-master/
https://buildbot.wireshark.org/wireshark-master/
https://www.wireshark.org/download/automated/
https://www.wireshark.org/download/automated/

Introduction

* Create source packages and run distribution checks
* Runregression tests

Each step is represented at the status page by arectangle, greenif it succeeded or red if it failed. Most
steps provide alink to the corresponding console logfile, to get additional information.

The Buildbot runs on a platform collection that represents the different "platform specialties’ quite
well:

» Windows 8.1 x86 (Win32, little endian, Visua Studio 2013)

» Windows 7 x86-64 (Win64, little endian, Visua Studio 2013)

» Ubuntu x86-64 (Linux, little endian, gcc, Clang)

» Solaris SPARC (Solaris, big endian, gcc)

» OS X x86 (BSD, little endian, Clang)

* OS X x86-64 (BSD, little endian, Clang)

and two buildslaves that run static code analysis to help spot coding issues:
 Visua Studio Code Analysis (Win64, little endian, VS 2013)

» Clang Code Analysis (Linux, little endian, Clang)

Each platformisrepresented at the status page by asingle column, the most recent entriesare at the top.

1.7. Reporting problems and getting help

1.7.1.

1.7.2.

1.7.3.

If you have problems, or need help with Wireshark, there are several places that may be of interest
to you (well, beside this guide of course).

Website

You will find lots of useful information on the Wireshark homepage at https.//www.wireshark.org/.
WiKi

The Wireshark Wiki at https://wiki.wireshark.org/ provides a wide range of information related
to Wireshark and packet capturing in general. You will find a lot of information not part of this
developer’s guide. For example, there is an explanation how to capture on a switched network, an
ongoing effort to build a protocol reference and alot more.

And best of al, if youwould like to contribute your knowledge on a specific topic (maybe a network
protocol you know well), you can edit the Wiki pages by simply using your webbrowser.

FAQ

The "Frequently Asked Questions” will list often asked questions and the corresponding answers.

Before sending any mail to the mailing lists below, be sure to read the FAQ, as it will often answer
any questions you might have. This will save yourself and others a lot of time. Keep in mind that a
lot of people are subscribed to the mailing lists.

You will find the FAQ inside Wireshark by clicking the menu item Help/Contents and selecting the
FAQ pagein the upcoming dialog.

https://www.wireshark.org/
https://wiki.wireshark.org/

Introduction

1.7.4.

1.7.5.

An online version is available at the Wireshark website: https.//www.wireshark.org/fag.html. You
might prefer thisonline version asit’ stypically more up to date and the HTML format is easier to use.

Other sources

If you don't find the information you need inside this book, there are various other sources of
information:

* The file doc/README.developer and all the other README.xxx files in the source code. These
are various documentation files on different topics

Read the README

README.developer is packed full with all kinds of details relevant to the developer
of Wireshark source code. Its companion file README.dissector advises you around
common pitfalls, shows you basic layout of dissector code, shows details of the APIs
available to the dissector devel oper, etc.

» The Wireshark source code
» Tool documentation of the various tools used (e.g. manpages of sed, gcc, etc.)

» Thedifferent mailing lists. See Section 1.7.5, “Mailing Lists’

Mailing Lists
There are several mailing lists available on specific Wireshark topics:

wireshark-announce This mailing list will inform you about new program releases, which
usually appear about every 4-8 weeks.

wireshark-users This list is for users of Wireshark. People post questions about
building and using Wireshark, others (hopefully) provide answers.

wireshark-dev This list is for Wireshark developers. People post questions about
the development of Wireshark, others (hopefully) provide answers.
If you want to start devel oping a protocol dissector, join thislist.

wireshark-bugs Thislist isfor Wireshark devel opers. Every time a change to the bug
database occurs, a mail to this mailing list is generated. If you want
to be notified about all the changes to the bug database, join thislist.
Details about the bug database can be found in Section 1.7.6, “Bug
database (Bugzilla)”.

wireshark-commits Thislist isfor Wireshark developers. Every time achangeto the GIT
repository ischeckedin, amail tothismailinglist isgenerated. If you
want to be notified about all the changes to the GIT repository, join
thislist. Details about the GIT repository can be found in Section 3.2,
“The Wireshark Git repository”.

Y ou can subscribeto each of these listsfrom the Wireshark web site: https://www.wireshark.org/lists/.
From there, you can choose which mailing list you want to subscribe to by clicking on the Subscribe/
Unsubscribe/Options button under the title of the relevant list. The links to the archives are included
on that page as well.

The archives are searchable

Y ou can search in thelist archives to see if someone previously asked the same question
and maybe aready got an answer. That way you don’'t have to wait until someone
answers your question.

https://www.wireshark.org/faq.html
https://www.wireshark.org/lists/

Introduction

1.7.6.

1.7.7.

1.7.8.

1.7.9.

Bug database (Bugzilla)

The Wireshark community collects bug reports in a Bugzilla database at https://bugs.wireshark.org/.
This database is filled with manually filed bug reports, usually after some discussion on wireshark-
dev, and automatic bug reports from the Buildbot tools.

Q&A Site

TheWireshark Q and A siteat https.//ask.wireshark.org/ offersaresource where questionsand answers
come together. Y ou have the option to search what questions were asked before and what answers
were given by people who knew about the issue. Answers are graded, so you can pick out the best
ones easily. If your issue isn’t discussed before you can post one yourself.

Reporting Problems

Test with the latest version

Before reporting any problems, please make sure you have installed the latest version
of Wireshark. Reports on older maintenance releases are usually met with an upgrade
request.

If you report problems, provide as much information as possible. In general, just think about what you
would need to find that problem, if someone el se sends you such a problem report. Also keep in mind
that people compile/run Wireshark on alot of different platforms.

When reporting problems with Wireshark, it is helpful if you supply the following information:

1. The version number of Wireshark and the dependent libraries linked with it, e.g. Qt, GTK+, etc.
Y ou can obtain this with the command wi r eshar k -v.

2. Information about the platform you run Wireshark on.
3. A detailed description of your problem.

4. If you get an error/warning message, copy the text of that message (and also afew lines before and
after it, if there are some), so others may find the build step where things go wrong. Please don’t
give something like: "1 get awarning when compiling x" asthiswon’t give any direction tolook at.

Don’t send largefiles

Do not send large files (>100K B) to the mailing lists, just place a note that further data
is available on request. Large files will only annoy a lot of people on the list who are
not interested in your specific problem. If required, you will be asked for further data by
the persons who really can help you.

Don’t send confidential infor mation
If you send captured data to the mailing lists, or add it to your bug report, be sure it

doesn’t contain any sensitive or confidential information, such as passwords. Visibility
of such files can be limited to certain groups in the Bugzilla database though.

Reporting Crashes on UNIX/Linux platforms

When reporting crashes with Wireshark, it is helpful if you supply the traceback information (besides
the information mentioned in Section 1.7.8, “Reporting Problems”).

Y ou can obtain this traceback information with the following commands:

https://bugs.wireshark.org/
https://ask.wireshark.org/

Introduction

$ gdb “whereis wireshark | cut -f2 -d: | cut -d ' -f2° core >& bt.txt
backt race
D
$
Using GDB

Type the charactersin the first line verbatim. Those are back-tics there.

backt r ace isagdb command. Y ou should enter it verbatim after the first line shown
above, but it will not be echoed. The *D (Control-D, that is, press the Control key and
the D key together) will cause gdb to exit. Thiswill leave you with afilecalled bt.txt in
the current directory. Include the file with your bug report.

If you do not have gdb available, you will have to check out your operating system’s
debugger.

Y ou should mail the traceback to the wireshark-dev mailing list, or attach it to your bug report.

1.7.10. Reporting Crashes on Windows platforms

Y ou can download Windows debugging symbol files (.pdb) from the following locations:

» 32-bit Windows: https://www.wireshark.org/downl oad/win32/all-versions/

* 64-bit Windows: https.//www.wireshark.org/downl oad/win64/all-versions/

Files are named "Wireshark-pdb-winbits-x.y.z.zip" to match their corresponding " Wireshark-winbits-
X.y.z.exe" installer packages.

mailto:wireshark-dev[AT]wireshark.org
https://www.wireshark.org/download/win32/all-versions/
https://www.wireshark.org/download/win64/all-versions/

Chapter 2. Quick Setup
2.1. UNIX: Installation

All thetools required are usually installed on a UNIX developer machine.

If atool is not already installed on your system, you can usualy install it using the package in your
distribution: aptitude, yum, Synaptic, etc.

If an install package is hot available or you have a reason not to use it (maybe because it's simply
too old), you can install that tool from source code. The following sections will provide you with the
webpage addresses where you can get these sources.

2.2. Win32/64:. Step-by-Step Guide

2.2.1.

2.2.2.

2.2.3.

A quick setup guide for Win32 and Win64 with recommended configuration.

Warning

Unless you know exactly what you are doing, you should dtrictly follow the
recommendations below. They are known to work and if the build breaks, please re-read
this guide carefully.

Known traps are;
1. Not using the correct (x86 or x64) version of the Visual Studio command prompt.

2. Not copying/downloading the correct version of vcredist XYY .exe.

Install PowerShell

PowerShell 2.0 or later isrequired for building Wireshark and the NSIS package. Windows 7 and later
include compatible versions. It is also required by Chocolatey.

If you are running Windows Vista and have thus far managed to not install PowerShell 2.0, either
directly or via anything that requires it, you must now install PowerShell 2.0. You can download it
from https.//www.microsoft.com/powershell

Optional: Install Chocolatey

Chocolatey is a native package manager for Windows. There are packages for most of the software
listed below. Along with traditional Windows packages it supports Cygwin and the Python Package
Index.

Install Microsoft C compiler and SDK

Y ou need to install, in exactly this order:

1. C compiler: Download and install "Microsoft Visual Studio 2013 Community Edition.” Thisis a
small download that then downloads all the other required parts (which are quite large).

Uncheck al the optional components (unlessyou want to usethem for purposes other than Wireshark).

Y ou can use Chocolatey to install Visua Studio:

PS$>choco install Visual Studi oCommunity2013

10

https://www.microsoft.com/powershell
https://chocolatey.org/
https://chocolatey.org/packages
http://go.microsoft.com/?linkid=9863608

Quick Setup

2.2.4.

2.2.5.

Y ou can use other Microsoft C compiler variants, but V S2013 isused to build the devel opment releases
and is the preferred option. It's possible to compile Wireshark with a wide range of Microsoft C
compiler variants. For details see Section 4.6, “Microsoft compiler toolchain (Windows native)”.

Y ou may have to do this as Administrator.

Compiling with gcc or Clang is not recommended and will certainly not work (at least not without a
lot of advanced tweaking). For further details on thistopic, see Section 4.5, “GNU compiler toolchain
(UNIX only)”. Thismay changein future asreleases of Visual Studio add more cross-platform support.

Why isthis recommended? While thisis a huge download, Visual Studio 2013 Community Editionis
the only free (asin beer) versions that includes the Visual Studio integrated debugger. Visual Studio
2013 isalso used to create official Wireshark builds, so it will likely have fewer devel opment-related
problems.

For VS2010 Y ou will need some extraitems:

1. Windows SDK for Windows 7, if you want to build 64-bit binaries for Windows 7: Download and
install "Microsoft Windows SDK for Windows 7."

In casetheinstall of the SDK fails go to software management and remove the V C++ 2010 runtime
and redist packages (don’t worry, they will be added back viathe service pack later). If installation
of the SDK still fails, there may be a permission problem. See here for a solution.

2. C compiler service pack: Download and install "Microsoft Visua Studio 2010 Service Pack 1."
Thisisavery large download.

3. Microsoft Visual C++ 2010 Service Pack 1 Compiler Update for the Windows SDK 7.1, if you
want to build 64-bit binaries for Windows 7: Download and install "Microsoft Visua C++ 2010
Service Pack 1 Compiler Update for the Windows SDK 7.1."

4. If you will be building 64-bit binaries those items must be installed in that order asinstalling the
Microsoft Visual Studio 2010 Service Pack 1 can, if you' veinstalled the Microsoft Windows SDK
for Windows 7, remove the 64-hit compilers, as per http://support.microsoft.com/?kbid=2519277
the Microsoft Knowledge Base article "FIX: Visual C++ compilers are removed when you upgrade
Visua Studio 2010 Professional or Visual Studio 2010 Express to Visua Studio 2010 SP1 if
Windows SDK v7.1isinstalled". Therelease notesfor the Microsoft Visual C++ 2010 Service Pack
1 Compiler Update for the Windows SDK 7.1 say that, to ensure that your system has a supported
configuration, you must install theitemsin the order specified above. If you have Microsoft Update
installed, so that the Windows update process will update software other than components of
Windows, and thus will update Visual Studio, you may need to disableit until after all of the above
areinstaled, to make sureit doesn’t install Visual Studio 2010 SP1 out of order.

Install Qt

The main Wireshark application uses the Qt windowing toolkit. To install Qt download the Online
Installer from the Qt Project download page and select a component that matches your target system
and compiler. For example, the “msvc2013 64-bit OpenGL” component is used to build the official
64-bit packages.

Notethat separateinstallations (into different directories) of Qt arerequired for 32 bit and 64 bit builds.
The environment variable QT5_BASE_DIR should be set as appropriate for your environment and
should point to the Qt directory that contains the bin directory, e.g. C:\Qt\Qt5.5.0\5.5\msvc2013

Install Cygwin

On 32-bit Windows, download the 32-bit Cygwin installer and start it. On 64-bit Windows, download
the 64-bit Cygwin installer and start it.

11

http://msdn.microsoft.com/en-us/windowsserver/bb980924.aspx
http://ctrlf5.net/?p=184
http://www.microsoft.com/en-us/download/details.aspx?id=23691
http://www.microsoft.com/en-us/download/details.aspx?id=4422
http://support.microsoft.com/?kbid=2519277
http://qt-project.org/downloads
http://www.cygwin.com/setup-x86.exe
http://www.cygwin.com/setup-x86_64.exe
http://www.cygwin.com/setup-x86_64.exe

Quick Setup

2.2.6.

2.2.7.

At the " Select Packages' page, you'll need to select some additional packages which are not installed
by default. Navigate to the required Category/Package row and, if the package has a"Skip" item in
the "New" column, click on the "Skip" item so it shows a version number for:

» Archive/lunzip (not needed if using CMake)

» Devel/bison (or install Win flex-bison - see Chocolatey below)

» Devel/flex (or install Win flex-bison - see Chocolatey below)

» Devel/git (recommended - see discussion about using Git below)
* Interpreters/perl

« Utils/patch (only if needed) (may be Devel/patch instead)

» Web/wget (not needed if using CMake)

» Text/asciidoc

* Text/docbook-xml45

Y ou might also have to install

* Interpretersm4

if installing Devel/bison doesn’t provide aworking version of Bison. If m4 is missing bison will fail.

After clicking the Next button several times, the setup will then download and install the selected
packages (this may take awhile).

Why isthisrecommended? Cygwin’' sbash versionisrequired, asno native Win32 versionisavailable.
As additional packages can easily be added, Perl and other packages are also used.

Alternatively you can install Cygwin and its packages using Chocolatey:

PS$>choco install cygw n
PS$>choco install cyg-get
PS$>choco install sed asciidoc [...] -source cygw n

Chocolatey installs Cygwin in C:\tools\cygwin by default.

Y ou can use Chocolatey’s Win flex-bison packages rather than the Cygwin Bison and Flex package:

PS$>choco install wi nflexbison

Install Python

Get the Python 2.7 installer from http://python.org/download/ and install Python into the default
location (C:\Python27).

Why isthis recommended? Cygwin’s Python package doesn’t work on some machines, so the Win32
native package is recommended (and it’s faster). Note that Python 3.x isn’'t currently supported.

Alternatively you can install Python using Chocolatey:

PS$>choco install python2

Chocolatey installs Python 2 in C:\tools\python2 by default.

Install Git

Please note that thefollowing isnot required to build Wireshark but can be quite hel pful when working
with the sources.

12

http://python.org/download/

Quick Setup

Working with the Git source repositories is highly recommended, see Section 3.3, “Obtain the
Wireshark sources’. Itismuch easier to update a personal sourcetree (local repository) with Git rather
than downloading azip file and merging new sourcesinto apersonal sourcetree by hand. It also makes
first-time setup easy and enables the Wireshark build process to determine your current source code
revision.

There are severa waysin which Git can be installed. Most packages are available at the URL s below
or via Chocolatey. Note that many of the GUI interfaces depend on the command line version.

2.2.7.1. The Official Windows Installer

The officia command-line installer is available at http://msysgit.github.io/.

2.2.7.2. Git Extensions

Git Extensionsis anative Windows graphical Git client for Windows. Y ou can download the installer
from http://code.google.com/p/gitextensions/.

2.2.7.3. TortoiseGit

TortoiseGit isanative Windows graphical Git similar to TortoiseSVN. Y ou can download theinstaller
from http://code.google.com/p/tortoisegit/.

2.2.7.4. Command Line client via Chocolatey

The command line client can be installed (and updated) using Chocolatey:

PS$> choco install git

2.2.7.5. Others

A list of other GUI interfaces for Git can be found at http://git-scm.com/downl oads/guis

2.3. Install CMake

Get the CMakeinstaller from https.//cmake.org/download/ and install CM ake into the default |ocation.
Ensure the directory containing cmake.exe is added to your path.

Alternatively you can install CMake using Chocolatey:

PS$>choco install cnake. portable

Chocolatey ensures cmake.exe is on your path.

2.3.1. Install and Prepare Sources

Make sure everything works

It'sagood ideato make sure Wireshark compiles and runs at least once before you start
hacking the Wireshark sources for your own project. This example uses Git Extensions
but any other Git client should work as well.

Download sources Download Wireshark sources into C:\Development\wireshark using either the
command line or Git Extensions:

Using the command line:

>cd C:\ Devel opnent

13

https://chocolatey.org/
http://msysgit.github.io/
http://code.google.com/p/gitextensions/
http://code.google.com/p/tortoisegit/
http://git-scm.com/downloads/guis
https://cmake.org/download/

Quick Setup

2.3.2.

>git clone https://code.w reshark. org/review w reshark

Using Git extensions:

1

3.

Open the Git Extensions application. By default Git Extensions will show avalidation checklist at
startup. If anything needs to be fixed do so now. You can bring up the checklist at any time via
Tools # Settings.

. In the main screen select Clone repository. Fill in the following:

Repository to clone: ht t ps: // code. wi reshar k. org/ revi ew wi reshar k
Destination: Y our top-level development directory, e.g. C: \ Devel opnent .

Subdirectory to create: Anything you'd like. Usually wi r eshar k.

Check your paths

Make sure your repository path doesn’t contain spaces.

Click the Clone button. Git Extensions should start cloning the Wireshark repository.

Open a Visual Studio Command Prompt

From the Start Menu (or Start Screen), navigate to the Visual Studio 2013 _ Visual Studio Tools
directory and choose the Command Prompt appropriate for the build you wish to make, e.g. VS2013
x86 Native Tools Command Prompt for a32-bit version, V S2013 x64 Native Tools Command Prompt
for a64-hit version.

Pin theitemsto the Task Bar

Pin the Command Prompt you use to the Task Bar for easy access.

All subsequent operations take place in this Command Prompt window.

1

Set environment variables to control the build.

Set the following environment variables, using paths and values suitable for your installation:

set CYGWN N=nodosfi | ewar ni ng

set W RESHARK BASE DI R=C: \ Devel opment or set WRESHARK LIB DIR to the appropriate library direc
set W RESHARK TARGET_PLATFORM=w n32 or wi n64 as required

set QI5_BASE DIR=C:\Q\Q@5.5.0\5. 5\ nsvc2013

VvV VV VvV

> set W RESHARK VERS| ON_EXTRA=- Your Ext r aVer si onl nf o

If your Cygwin installation path is not automatically detected by CMake, you can explicitly specify
it with the following environment variable:

> set W RESHARK_CYGW N_I NSTALL_PATH=c:\cygwi n or whatever other path that is applicable to your ¢

If you areusing aversion of Visual Studio earlier than VS2012 then you must set an additional env
var, e.g. for VS2010 set the following:

> set Visual Studi oVersi on=10.0

Setting these variables could be added to a batch file to be run after you open the Visual Studio
Tools Command Prompt.

. Create and change to the correct build directory. CMake is best used in an out-of-tree build

configuration where the build is done in a separate directory to the source tree, leaving the source
tree in a pristine state. 32 and 64 bit builds require a separate build directory. Create (if required)
and change to the appropriate build directory.

14

Quick Setup

2.3.3.

2.3.4.

> nkdir C:\ Devel opnent\ wsbui | d32
> cd C:\Devel oprment \ wsbui | d32

to create and jump into the build directory.

The build directory can be deleted at any time and the build files regenerated as detailed in
Section 2.3.3, “ Generate the build files’.

Generate the build files

CMakeisusedto processthe CMakeL ists.txt filesin the source tree and produce build files appropriate
for your system.

You can generate Visua Studio solution files to build either from within Visua Studio, or from the
command line with MSBuild. CMake can aso generate other build types but they aren’t supported.

Theinitial generation step isonly required thefirst timeabuild directory is created. Subsequent builds
will regenerate the build files as required.

If you've closed the Visual Studio Command Prompt prepare it again.

To generate the build files enter the following at the Visua Studio command prompt:

> cmake - DENABLE _CHM GUI DES=on -G "Visual Studio 12" ..\wireshark

Adjusting the paths as required to Python and the wireshark source tree. To use a different generator
modify the -G parameter, cmake -G lists all the CMake supported generators, but only Visual Studio
is supported for Wireshark builds.

Tobuildanx64 version, the-G parameter must have aWin64 suffix, e.g. -G "Visual Studio 12 Win64",
eg.
> cnmake - DENABLE CHM GUI DES=on -G "Visual Studio 12 Wn64" ..\w reshark

The CMake generation process will download the required 3rd party libraries (apart from Qt) as
required, then test each library for usability before generating the build files.

At the end of the CMake generation process the following should be displayed:

-- Configuring done
-- Generating done
-- Build files have been witten to: C./Devel opnent/wsbuil d32

If you get any other output, thereisan issue in your envirnment that must be rectified before building.
Check the parameters passed to CM ake, especially the -G option and the path to the Wireshark sources
and the environment variables WIRESHARK BASE DIR, WIRESHARK_TARGET _PLATFORM
and QT5 BASE DIR.

Build Wireshark

Now it’ stimeto build Wireshark!
1. If you've closed the Visual Studio Command Prompt prepare it again.

2. Run
> nsbuild /m/p: Configurati on=Rel WthDebl nfo Wreshark.sln

to build Wireshark.

3. Wait for Wireshark to compile. Thiswill take awhile, and there will be alot of text output in the
command prompt window

15

Quick Setup

2.3.5.

2.3.6.

2.3.7.

4, For the QT version run C.\ Devel opnent\wsbuil d32\ run\ Rel Wt hDebl nfo
\ W r eshar k. exe and make sure it starts.

5. For the older GTK version run C: \ Devel opnent \ wsbui | d32\ run\ Rel W t hDebl nf o
\'wi reshar k- gt k. exe.

6. Open Help # About. If it showsyour "private" program version, e.g.: Version 2.1.x-myprotocol 123
congratulations! Y ou have compiled your own version of Wireshark!

You may aso open the Wireshark solution file (Wireshark.sin) in the Visual Studio IDE and build
there.

Tip

If compilation fails for suspicious reasons after you changed some source files try
to clean the build files by running msbuild /m /p:Configuration=RelWithDeblnfo
Wireshark.sln /t:Clean and then building the solution again.

The build files produced by CMake will regenerate themselves if required by changes in the source
tree.

Debug Environment Setup

Y ou can debug using the Visual Studio Debugger or WinDbg. See the section on using the Debugger
Tools.

Optional: Create User’s and Developer’s Guide

Detailed information to build these guides can be found in the file docbookkREADME.txt in the
Wireshark sources.

Optional: Create a Wireshark Installer

Note: Y ou should have successfully built Wireshark before doing the following.
If you want to build your own wireshark-win32-2.1.x-myprotocol 123.exe, you'll need NSIS.
1. NSIS: Download and install NSIS
Note that the 32-bit version of NSIS will work for both 32-bit and 64-bit versions of Wireshark.

Note: If you do not yet have a copy of veredist x86.exe or veredist_x64.exe in ./wireshark-winXX-
libs (where XX is 32 or 64) you will need to download the appropriate file and placeit in ./wireshark-
winX X-libs before starting this step.

If building an x86 version using a Visual Studio "Express" edition or an x64 version with any edition,
then you must have the appropriate vcredist file for your compiler in the support libraries directory
(veredist_x86.exe in wireshark-32-libs or veredist x64.exe in wireshark-win64-libs).

The files can be located in the Visua Studio install directory for non-Express edition builds, or
downloaded from Microsoft for Expresss edition builds.

Note you must use the correct version of veredist for your compiler, unfortunately they all have the
same name (veredist_x86.exe or veredist x64.exe). Y ou can use Windows Explorer and examine the
Properties>> Detail stab for avcredist file to determine which compiler version thefileisfor use with.

1. If you've closed the Visual Studio Command Prompt prepareit again.

2. Run

16

http://nsis.sourceforge.net

Quick Setup

> msbuild /m/p: Configurati on=Rel WthDebl nfo nsis_package_prep. vcxpr oj
> msbuild /m/p: Configurati on=Rel WthDebl nfo nsis_package. vcxpr oj

to build a Wireshark installer.
. Run
> C:\ Devel opnent \ wi r eshar k\ packagi ng\ nsi s\ wi r eshar k- wi n32-wi r eshar k- maj or - m nor-version: [].x-nypr

totest your new installer. It sagood ideato test on adifferent machine than the devel oper machine.
Note that if you've built an x64 version, the installer will be named accordingly.

17

Chapter 3. Work with the Wireshark
sources

3.1. Introduction

This chapter will explain how to work with the Wireshark source code. It will show you how to:
*+ Get the source

» Compileit on your machine

 Submit changes for inclusion in the official release

This chapter will not explain the source file contents in detail, such as where to find specific
functionality. Thisis donein Section 7.1, “ Source overview”.

3.2. The Wireshark Git repository

3.2.1.

Git isused to keep track of the changes made to the Wireshark source code. The code is stored inside
Wireshark project’s Git repository located at a server at the wireshark.org domain.

Changes to the official repository are managed using the Gerrit code review system. Gerrit makes it
easy to test and discuss changes before they are pushed to the main repository. For an overview of
Gerrit see the Quick Introduction.

Why Git? Gitis afagt, flexible way of managing source code. It alows large scale distributed
development and ensures data integrity.

Why Gerrit? Gerrit makes it easy to contribute. Y ou can sign in with any OpenlD provider and
push your changes. It's usable from both the web and command line and is integrated with many
popular tools.

Git isour third revision control system

Wireshark originally used Concurrent Versions System (CVS) and migrated to
Subversion in July 2004. The Subversion repository was subsequently migrated to Git
in January 2014.

Using Wireshark’ s Git repository you can:

» Keep your private sources up to date with very little effort

» Get amail notification when the official source code changes

» Get the source files from any previous release (or any other point in time)
» Haveaquick look at the sources using aweb interface

» See which person changed a specific piece of code

* and much more

The web interface to the Git repository

If you need a quick look at the Wireshark source code you can browse the most recent file versions
in the master branch using Gitweb:

18

http://git-scm.com/
https://code.google.com/p/gerrit/
https://code.wireshark.org/review/Documentation/intro-quick.html
http://www.nongnu.org/cvs/
http://subversion.apache.org/

Work with the Wireshark sources

https.//code.wireshark.org/review/gitweb?p=wireshark.qgit;a=tree

Y ou can aso view commit logs, branches, tags, and past revisions:

https://code.wireshark.org/review/qitweb?p=wireshark.git

Like most revision control systems, Git uses branching to manage different copies of the source code
and allow parallel development. Wireshark uses the following branches for official releases:

e master: Main feature development and odd-numbered "feature" releases.

» master-x.y: Stable release maintenance. For example, master-1.10 is used to manage the 1.10.x
officia releases.

3.3. Obtain the Wireshark sources

3.3.1.

There are several ways to obtain the sources from Wireshark’ s Git repository.

Check out from the master branch using Git.
Using Git is much easier than synchronizing your source tree by hand using any of the
snapshot methods mentioned below. Git merges changes into your personal source tree

in avery comfortable and quick way. So you can update your source tree several times
a day without much effort.

Keep your sourcesup to date

The following ways to retrieve the Wireshark sources are sorted in decreasing source
timeliness. If you plan to commit changes you' ve made to the sources, it's a good idea
to keep your private source tree as current as possible.

The age mentioned in the following sections indicates the age of the most recent change in that set
of the sources.

Git over SSH or HTTPS

Recommended for devel opment purposes.
Age: afew minutes.

Y ou can use a Git client to download the source code from Wireshark’ s code review system. Anyone
can clone from the anonymous git URL :

« https://code.wireshark.org/review/wireshark

If you create a Gerrit account you can clone from an authenticated URL :
* ssh://your.username@code.wireshark.org:29418/wireshark

* https.//your.username@code.wireshark.org/review/wireshark

SSH lets you use Gerrit on the command line. HTTP lets you access the repository in environments
that block the Gerrit SSH port (29418). At the time of this writing (early 2014) we recommend that
you use the SSH interface. However, this may change as more tools take advantage of Gerrit' SHTTP
REST API.

Thefollowing example shows how to get up and running on the command line. See Section 4.13, “Git
client” for information on installing and configuring graphical Git and Gerrit clients.

19

https://code.wireshark.org/review/gitweb?p=wireshark.git;a=tree
https://code.wireshark.org/review/gitweb?p=wireshark.git
http://en.wikipedia.org/wiki/Branching_%28revision_control%29
https://code.wireshark.org/review/wireshark
https://your.username@code.wireshark.org/review/wireshark
https://code.wireshark.org/review/Documentation/cmd-index.html#_server

Work with the Wireshark sources

3.3.2.

1. Signin to https.//code.wireshark.org/review using OpenlD (click Register or Sign In in the upper
right corner of the web page). Follow the login instructions.

2. Inthe upper right corner of the web page, click on your account name and select Settings.

3. Under Profile set ausername. Thiswill be the username that you use for SSH access. For the steps
below we'll assume that your usernameishenry. perry.

4. Select SSH Public Keys and add one or more keys. You will typicaly upload a key for each
computer that you use.

5. Ingtall git-review. Thisis an installable package in many Linux distributions. Y ou can also install
it as a Python package. (This step isn't strictly necessary but it makes working with Gerrit much
easier.) Toinstall it from Chocolatey run
Make sure "Scripts" is in our path
PS$>%env: path += "; C:\t ool s\ pyt hon2\ Scri pts"

PS$>choco install pip
PS$>choco install git-review -source python

6. Now on to the command line. First, make suregi t works:
$ git --version

7. If thisisyour first time using Git, make sure your username and email address are configured. This
is particularly important if you plan on uploading changes.

$ git config --global user.nane "Henry Perry"
$ git config --global user.email henry.perry@xanple.com

8. Next, clone the Wireshark master:
$ git clone ssh://henry. perry@ode. w reshark. org: 29418/ wi r eshar k

The checkout only hasto be done once. Thiswill copy all the sources of thelatest version (including
directories) from the server to your machine. This may take some time depending on the speed of
your internet connection.

9. Then set up the git pre-commit hook and the push address:
$ cd wireshark

$ cp tools/pre-commit .git/hooks/
$ git config --add renpte. origin. push HEAD: refs/for/naster

This will run a few basic checks on commit to make sure that the code does not contain trivial
errors. It will also warn if it is out of sync with its master copy in the tools/ directory. The change
in the push address is necessary: We have an asymmetric process for pulling and pushing because
of gerrit.

10.Initialize git-review.
$ git review -s

Thispreparesyour local repository for usewith Gerrit, including installingtheconmm t - nsg hook
script.

Git web interface

Recommended for informational purposes only, as only individual files can be downloaded.
Age: afew minutes (same as anonymous Git access).

The entire source tree of the Git repository is available via a web interface at https:/
code.wireshark.org/review/gitweb?p=wireshark.git. You can view each revision of a particular file,

20

https://code.wireshark.org/review
https://pypi.python.org/pypi/git-review
https://code.wireshark.org/review/gitweb?p=wireshark.git
https://code.wireshark.org/review/gitweb?p=wireshark.git

Work with the Wireshark sources

3.3.3.

3.3.4.

as well as diffs between different revisions. You can aso download individual files but not entire
directories.

Buildbot Snapshots

Recommended for development purposes, if direct Git access isn't possible (e.g. because of a
restrictive firewall).

Age: some number of minutes (abit older than the Git access).
The Buildbot server will automatically start to generate a snapshot of Wireshark’s source tree after

a source code change is committed. These snapshots can be found at https://www.wireshark.org/
download/automated/src/.

If Git access isn’t possible, e.g. if the connection to the server isn't possible because of a corporate
firewall, the sources can be obtained by downloading the Buildbot snapshots. However, if you are
going to maintain your sourcesin parallel to the"official" sourcesfor sometime, it's recommended to
use the anonymous (or authenticated) Git access if possible (believeit, it will save you alot of time).

Released sources

Recommended for building pristine packages.
Age: from days to weeks.
The official source releases can be found at https.//www.wireshark.org/download.html. Y ou should

use these sources if you want to build Wireshark on your platform for with minimal or no changes,
such Linux distribution packages.

Thedifferences between the rel eased sources and the sourcesin the Git repository will keep on growing
until the next release is made. (At the release time, the released and latest Git repository versions are
identical again :-).

3.4. Update the Wireshark sources

3.4.1.

After you've obtained the Wireshark sources for the first time, you might want to keep them in sync
with the sources at the upstream Git repository.

Takealook at the Buildbot fir st

As development evolves, the Wireshark sources are compilable most of the time — but
not always. You should take a look at https://buildbot.wireshark.org/trunk/waterfall
before fetching or pulling to make sure the builds are in good shape.

Update Using Git

After you clone Wireshark’s Git repository you can update by running

$ git status
$ git pull

Depending on your preferences and work habits you might wanttorungit pull --rebase or
git checkout -b my-topic-branch origin/master instead.

Fetching should only take afew seconds, even on aslow internet connection. It will update your local
repository history with changes from the official repository. If you and someone else have changed

21

https://www.wireshark.org/download/automated/src/
https://www.wireshark.org/download/automated/src/
https://www.wireshark.org/download.html
https://buildbot.wireshark.org/trunk/waterfall

Work with the Wireshark sources

3.4.2.

the same file since the last update, Git will try to merge the changes into your private file (this works
remarkably well).

Update Using Source Archives

There are several ways to download the Wireshark source code (as described in Section 3.3, “ Obtain
the Wireshark sources’), but bringing the changes from the official sources into your personal source
treeisidentical.

First of all, you will download thenew . t ar . bz 2 file of the official sources the way you did it the
first time.

If you haven't changed anything in the sources, you could simply throw away your old sources and
reinstall everything just like the first time. But be sure, that you really haven't changed anything. It
might be agood ideato simply renamethe "old" dir to have it around, just in case you remember later
that you really did change something before.

If you have changed your sourcetree, you have to merge the official changes sincethelast update into
your source tree. You will install the content of the . t ar . bz2 file into a new directory and use a
good merge tool (e.g. http://winmerge.sourceforge.net/for Win32) to bring your personal source tree
in sync with the official sources again.

This method can be problematic and can be much more difficult and error-prone than using Git.

3.5. Build Wireshark

3.5.1.

3.5.2.

The sources contain several documentation files. It's a good idea to read these files first. After
obtaining the sources, tools and libraries, the first place to look at is doc/README.developer. Inside
you will find the latest information for Wireshark development for all supported platforms.

Build Wireshark before changing anything

Itisavery goodideatofirst test your complete build environment (including running and
debugging Wireshark) before making any changes to the source code (unless otherwise
noted).

Building Wireshark for the first time depends on your platform.

Building on Unix

Run theaut ogen. sh script at the top-level wireshark directory to configure your build directory.

$./autogen. sh
$./configure
$ make

If you need to build with anon-standard configuration, you can run

$./configure --help

to see what options you have.

Win32 native

Follow the build procedure in Section 2.3.4, “Build Wireshark” to build Wireshark.

After the build process has successfully finished, you should findaW r eshar k. exe and some other
filesinther un\ Rel W t hDebl nf o directory.

22

http://winmerge.sourceforge.net/

Work with the Wireshark sources

3.6. Run generated Wireshark

3.6.1.

3.6.2.

Tip!

An dready installed Wireshark may interfere with your newly generated version in
various ways. If you have any problems getting your Wireshark running the first time,
it might be a good idea to remove the previously installed version first.

Unix/Linux

After asuccessful build you can run Wireshark right from the build directory. Still the program would
need to know that it's being run from the build directory and not from itsinstall location. This has an
impact on the directories where the program can find the other parts and relevant datafiles.

In order to run the Wireshark from the build directory set the environment variable
W RESHARK RUN_FROM BUI LD DI RECTORY and run Wireshark. If your platform is properly
setup, your build directory and current working directory are not in your PATH, so the command line
to launch Wireshark would be:

$ W RESHARK_RUN_FROM BUI LD DI RECTORY=1 ./ wi r eshark

There' s no need to run Wireshark as root user, you just won't be able to capture. When you opt to run
Wireshark this way, your terminal output can be informative when things don’t work as expected.

Win32 native

During the build all relevant program files are collected in asubdirectory r un\ Rel W t hDebl nf o.
Y ou can run the program from there by launching the Wireshark.exe executable.

The older GTK based version is also available in the same subdirectory. You can run the program
from there by launching the wireshark-gtk.exe executable.

3.7. Debug your generated Wireshark

3.7.1.

3.7.2.

Unix/Linux

When you want to investigate a problem with Wireshark you want to load the program into your
debugger. But loading wireshark into debugger fails because of the libtool build environment. You'll
have to wrap loading wireshark into a libtool command:

$ i btool --npde=execute gdb wireshark

If you prefer a graphic debugger you can use the Data Display Debugger (ddd) instead of GNU
debugger (gdb).

Additional traps can be set on GLib by setting the G_ DEBUG environment variable;

$ G DEBUG=fatal _criticals |libtool --npbde=execute ddd w reshark

See http://library.gnome.org/devel/glib/stable/glib-running.html

Win32 native

Y ou can debug using the Visua Studio Debugger or WinDbg. See the section on using the Debugger
Tools.

23

http://library.gnome.org/devel/glib/stable/glib-running.html

Work with the Wireshark sources

3.8. Make changes to the Wireshark sources

As the Wireshark developers are working on many different platforms, a lot of editors are used to
develop Wireshark (emacs, vi, Microsoft Visual Studio and many, many others). There' sno "standard”
or "default" development environment.

There are several reasons why you might want to change the Wireshark sources:

» Add support for a new protocol (a new dissector)

» Change or extend an existing dissector

» Fixabug

» Implement aglorious new feature

Theinternal structure of the Wireshark sourceswill bedescribed in Part |1, “Wireshark Development”.

Ask the wireshark-dev mailing list before you start a new
development task.

If you have an idea what you want to add or change it's a good idea to contact
the developer mailing list (see Section 1.7.5, “Mailing Lists”) and explain your idea.
Someone else might already be working on the same topic, so a duplicated effort can
be reduced. Someone might also give you tips that should be thought about (like side
effects that are sometimes very hard to see).

3.9. Contribute your changes

If you have finished changing the Wireshark sources to suit your needs, you might want to contribute
your changes back to the Wireshark community. Y ou gain the following benefits by contributing your
improvements:

 It's the right thing to do. Other people who find your contributions useful will appreciate them,
and you will know that you have helped people in the same way that the developers of Wireshark
have helped you.

* You get free enhancements. By making your code public, other devel opers have a chance to make
improvements, as there’'s always room for improvements. In addition someone may implement
advanced features on top of your code, which can be useful for yourself too.

* You save time and effort. The maintainers and developers of Wireshark will maintain your code as
well, updating it when API changes or other changes are made, and generally keeping it in tune
with what is happening with Wireshark. So if Wireshark is updated (which is done often), you can
get a new Wireshark version from the website and your changes will already be included without
any effort for you.

There's no direct way to push changes to the Git repository. Only a few people are authorised to
actually make changesto the source code (check-in changed files). If you want to submit your changes,
you should upload them to the code review system at https.//code.wireshark.org/review. Thisrequires
you to set up git as described at Section 3.3.1, “Git over SSH or HTTPS’.

3.9.1. Some tips for a good patch

Sometipsthat will makethe merging of your changesinto Git much morelikely (and you want exactly
that, don’t you?):

24

https://code.wireshark.org/review

Work with the Wireshark sources

3.9.2.

e Use the latest Git sources. It's a good idea to work with the same sources that are used by the
other developers. This usually makes it much easier to apply your patch. For information about the
different ways to get the sources, see Section 3.3, “Obtain the Wireshark sources’.

» Update your sources just before making a patch. For the same reasons as the previous point.

* Inspect your patch carefully. Run git diff and make sure you aren’t adding, removing, or
omitting anything you shouldn’t.

» Find a good descriptive topic name for your patch. Short, specific names are preferred. snowcone-
machine-protocol is good, your name or your company nameisn't.

« Don't put unrelated things into one large patch. A few smaller patches are usually easier to apply
(but also don’t put every changed line into a separate patch.

In general, making it easier to understand and apply your patch by one of the maintainers will make
it much more likely (and faster) that it will actually be applied.

Please remember

Wireshark is a volunteer effort. You aren't paying to have your code reviewed and
integrated.

Code Requirements

The core maintainers have done a lot of work fixing bugs and making code compile on the various
platforms Wireshark supports.

To ensure Wireshark’ s source code quality, and to reduce the workload of the core maintainers, there
are some things you should think about before submitting a patch.

Pay attention to the coding guidelines

Ignoring the code requirements will make it very likely that your patch will be rejected.

Follow the Wireshark source code style guide. Just because something compiles on your platform,
that doesn’t mean it’ll compile on al of the other platformsfor which Wireshark is built. Wireshark
runs on many platforms, and can be compiled with anumber of different compilers. See Section 7.2,

“Coding Style”’for details.

» Submit dissectors as built-in whenever possible. Developing a new dissector as a plugin is a good
idea because compiling and testing is quicker, but it's best to convert dissectors to the built-in
style before submitting for check in. This reduces the number of files that must be installed with
Wireshark and ensures your dissector will be available on al platforms.

Thisis no hard-and-fast rule though. Many dissectors are straightforward so they can easily be put
into "thebig pile", while some are ASN.1 based which takes adifferent approach, and somemultiple
source file dissectors are more suitable to be placed separately as plugins.

 Verify that your dissector code does not use prohibited or deprecated APIs. This can be done as
follows:

$ perl <wi reshark_root>/tool s/checkAPls.pl <source filename(s)>

» Fuzztest your changes! Fuzz testing is avery effective way to automatically find alot of dissector
related bugs. You'll take a capture file containing packets affecting your dissector and the fuzz
test will randomly change bytes in this file, so that unusual code paths in your dissector are
checked. There are tools available to automatically do this on any number of input files, see: https.
[Iwiki.wireshark.org/FuzzTesting for details.

25

https://wiki.wireshark.org/FuzzTesting
https://wiki.wireshark.org/FuzzTesting

Work with the Wireshark sources

3.9.3. Uploading your changes

When you're satisfied with your changes (and obtained any necessary approval from your
organization) you can upload them for review at https.//code.wireshark.org/review. This requires a
Gerrit Code Review account as described at Section 3.2, “ The Wireshark Git repository”.

Changes should be pushed to amagical "refs/for" branch in Gerrit. For example, to upload your new
Snowcone Machine Protocol dissector you could push to refs/for/master with the topic "snowcone-
machine":

$ git push ssh://my.username@ode. wi reshark. or g: 29418/ wi r eshar k HEAD: r ef s/ f or/ mast er/ snowcone- machi
Theusernamery . user nane isthe onewhich was given during registration with the review system.

If youhavegi t - revi ewinstalled you can upload the change with alot less typing:

Note: The "-f" flag del etes your current branch.
$ git review -f

You can push using any Git client. Many clients have support for Gerrit, either built in or via an
additional module.

Y ou might get one of the following responses to your patch request:
* Your patch is checked into the repository. Congratul ations!

* You are asked to provide additional information, capture files, or other material. If you haven't
fuzzed your code, you may be asked to do so.

 Your patch isregjected. You should get aresponse with the reason for rejection. Common reasons
include not following the style guide, buggy or insecure code, and code that won't compile on other
platforms. In each case you'll have to fix each problem and upload another patch.

» Youdon't get any response to your patch. Possible reason: All the core developers are busy (e.g.,
with their day jobs or family or other commitments) and haven't had time to look at your patch.
Don't worry, if your patch isin the review system it won't get lost.

If you're concerned, feel free to add a comment to the patch or send an email to the developer’s list
asking for status. But please be patient: most if not all of us do thisin our spare time.

3.9.4. Backporting a change

When a bug is fixed in the master branch it might be desirable or necessary to backport the fix to
a stable branch. You can do this in Git by cherry-picking the change from one branch to another.
Suppose you want to backport change 1ab2c3d4 from the master branch to master-1.10. Using "pure
Git" commands you would do the following:

Create a new topic branch for the backport.
$ git checkout -b backport-glab2c3d4 origin/naster-1.10

Cherry-pick the change. Include a "cherry picked from.." Iline.
$ git cherry-pick -x lab2c3d4

If there are conflicts, fix them

Conpil e and test the change.
make

@ ¥ H*

OPTIONAL: Add entries to dochbook/rel ease-notes. ascii doc.
$ $EDI TOR docbook/ r el ease- not es. asci i doc

|f you made any changes, update your commt:
$ git coomit --amend -a

26

https://code.wireshark.org/review
https://code.wireshark.org/review/Documentation/user-upload.html#push_create

Work with the Wireshark sources

Upl oad the change to Cerrit
$ git push ssh://ny.username@ode. w reshark. org: 29418/ wi reshark HEAD: refs/for/naster-1. 10/ backport -

If you want to cherry-pick a Gerrit change ID (e.g. 15e6f7890) you canuse git review -X
| 5e6f 7890 insteadof gi t cherry-pickandgit revi ewinsteadof gi t push asdescribed
in the previous chapter.

3.10. Apply a patch from someone else

Sometimesyou need to apply apatchto your private sourcetree. Maybe because you want to try apatch
from someone on the devel oper mailing list, or you want to check your own patch before submitting.

Bewar e line endings

If you have problems applying a patch, make sure the line endings (CR/LF) of the patch
and your source files match.

3.10.1. Using patch

Given the file new.diff containing a unified diff, the right way to call the patch tool depends on what
the pathnames in new.diff look like. If they’re relative to the top-level source directory (for example,
if apatch to prefs.c just has prefs.c as the file name) you'd run it as:

$ patch -p0 < new. diff

If they're relative to a higher-level directory, you'd replace O with the number of higher-level
directoriesin the path, e.g. if the names are wireshark.orig/prefs.c and wireshark.mine/prefs.c, you'd
run it with:

$ patch -pl < new. diff

If they're relative to a subdirectory of the top-level directory, you'd run pat ch in that directory and
run it with - pO.

If you run it without - pat all, the patch tool flattens path names, so that if you have a patch file
with patches to Makefile.am and wiretap/Makefile.am, it'll try to apply the first patch to the top-level
Makefile.am and then apply the wiretap/Makefile.am patch to the top-level Makefile.am as well.

At which position in the filesystem should the patch tool be called?

If the pathnames are relative to the top-level source directory, or to a directory above that directory,
you'd run it in the top-level source directory.

If they're relative to a subdirectory — for example, if somebody did a patch to packet-ip.c and ran
di ff orgit diff intheepan/dissectorsdirectory — you'drunitinthat subdirectory. Itispreferred
that people not submit patches like that, especialy if they’re only patching filesthat exist in multiple
directories such as Makefile.am.

3.11. Binary packaging

Delivering binary packages makesit much easier for the end-usersto install Wireshark on their target
system. This section will explain how the binary packages are made.

3.11.1. Debian: .deb packages

The Debian Package is built using dpkg-buildpackage, based on information found in the source tree
under debian. See http://www.debian-administration.org/articles/336for a more in-depth discussion
of the build process.

In the wireshark directory, type:

27

http://www.debian-administration.org/articles/336

Work with the Wireshark sources

$ dpkg- bui | dpackage -rfakeroot -us -uc

to build the Debian Package.

3.11.2. Red Hat: .rpm packages

The RPM is built using rpmbuild (http://www.rpm.org/), which comes as standard on many flavours
of Linux, including Red Hat and Fedora. The process creates a clean build environment in packaging/
rpm/BUILD every time the RPM is built. The settings controlling the build are in packaging/rpm/
SPECSwireshark.spec.in. After editing the settings in this file, ./configure must be run again in the
wireshark directory to generate the actual specification script.

Careful with that conf i gur e setting

The SPEC file contains settings for the configure used to set the RPM build environment.
These are mostly independent of any settings passed to the usual Wireshark . /
confi gur e. The exceptions to thisrule are:

* Theprefixgiventoconfi gure --prefi x ispassed to rpmbuild.
» The selection of the GUI (Qt, Gtk+, or both) is passed to rpmbuild.
» The selection of whether to include Lua support is passed to rpmbuild.

In the wireshark directory, type:

$ nmake rpm package

to build the RPM and source RPM. Once it is done, there will be a message stating where the built
RPM can be found.

Thismight take a while

Because this does a clean build as well as constructing the package this can take quite a
long time. Suggestion: add the following to your ~/ . r pnmracr os fileto allow parallel
builds:

% snp_nflags -j % grep -c processor /proc/cpuinfo)
Build requirementsdiffer from run requirements

Building the RPM requires building a source distribution which itself requires the Qt
development tools ui ¢ and noc. These can usually be obtained by installing the gt-
devel package.

3.11.3. OS X: .dmg packages

The OS X Package is built using OS X packaging tools, based on information found in the source
tree under packaging/macosx.

In the wireshark directory, type:

$ nake osx-package

to build the OS X Package.

3.11.4. Win32: NSIS .exe installer

The Nullsoft Install Systemis afreeinstaller generator for Win32 based systems; instructions how to
install it can be found in Section 4.17, “Windows: NSIS (optional)”. NSIS is script based, you will
find the Wireshark installer generation script at: packaging/nsis/wireshark.nsi.

28

http://www.rpm.org/

Work with the Wireshark sources

When building with CMake you must first build the nsis package prep target, followed by the
nsis package target, e.g.

> msbuild /m/p: Configurati on=Rel Wt hDebl nfo nsis_package_prep. vcexproj
> msbuild /m/p: Configurati on=Rel WthDebl nfo nsis_package. vcxpr oj

Splitting the packaging projects in thisway allows for code signing.
Thismight take a while

Please be patient while the package is compressed. It might take some time, even on
fast machines.

If everything went well, you will now find something like: wireshark-setup-2.1.0.exe in the packaging/
nsis directory in the source tree.

3.11.5. Win32: PortableApps .paf.exe package

PortableApps.comisan environment that lets users run popular applications from portable mediasuch
as flash drives and cloud drive services.

Install the PortableApps.com Platform. Install for “al users™, which will place it in C
\ Por t abl eApps. Add the following apps:

» NSIS Portable (Unicode)

* PortableApps.com Installer

* PortableApps.com Launcher

* PortableApps.com AppCompactor

When building with CMake you must first build the nsis_package prep target (which takes care of
general packaging dependencies), followed by the portableapps package target, e.g.

> msbuild /m/p: Configurati on=Rel WthDebl nfo nsis_package_prep. vcxpr oj
> msbuild /m/p: Configurati on=Rel WthDebl nfo portabl eapps_package. vcxpr oj

Thismight take a while

Please be patient while the package is compressed. It might take some time, even on
fast machines.

If everything went well, you will now find something like: WiresharkPortable 2.1.paf.exe in the
packaging/portableapps directory.

29

Chapter 4. Tool Reference

4.1. Introduction

This chapter will provide you with information about the various tools needed for Wireshark
development.

None of the tools mentioned in this chapter are needed to run Wireshark; they are only needed to
build it.

Most of these tools have their roots on UNIX like platforms, but Windows ports are also available.
Therefore the tools are available in different "flavours':

e UNIX (or Windows Cygwin): the tools should be commonly available on the supported UNIX
platforms, and for Windows platforms by using the Cygwin UNIX emulation

» Windows native: sometoolsare avail able as native Windowstools, no special emulationisrequired.
Many of thesetools can beinstalled (and updated) using Chocolatey, a Windows package manager
similar to the Linux package managers apt-get or yum.

Follow the directions

Unless you know exactly what you are doing, you should dtrictly follow the
recommendations given in Chapter 2, Quick Setup.

The following sections give a very brief description of what a particular tool is doing, how it is used
in the Wireshark project and how it can be installed and tested.

Documentation for these tool sis outside the scope of thisdocument. If you need further information on
using aspecific tool you should find lots of useful information on theweb, asthesetoolsare commonly
used. You can aso get help for the UNIX based tools with t ool nanme - - hel p or the man page
viaman t ool nane.

Y ou will find explanations of the tool usage for some of the specific development tasks in Chapter 3,
Work with the Wireshark sour ces.

4.2. Windows PowerShell

PowerShell 2.0 or later isrequired for building Wireshark and the NSI S package. Windows 7 and later
include compatible versions.

If you are running Windows Vista and have thus far managed to not install PowerShell 2.0, either
directly or via anything that requires it, you must now install PowerShell 2.0. You can download it
from https.//www.microsoft.com/powershell

4.3. Chocolatey

Chocolatey is a Windows package manager that can be used to install (and update) many of the
packages required for Wireshark development. Chocolatey can be obtained from the website or from
aDOS command prompt:

C.\>@owershel | -NoProfile -ExecutionPolicy unrestricted -Conmand "iex ((new object net.webclient).

or a Powershell prompt:

PS:\>i ex ((new object net.webclient).Downl oadString('https://chocol atey.org/install.psl'))

30

http://chocolatey.org
https://www.microsoft.com/powershell
http://chocolatey.org

Tool Reference

4.4. Windows: Cygwin

4.4.1.

4.4.2.

Cygwin provides a lot of UNIX based tools on the Windows platform. It uses a UNIX emulation
layer which might be a bit slower compared to the native Windows tools, but at an acceptable level.
The installation and update is pretty easy and done through a single utility, setup-x86.exe for 32-hit
Windows and setup-x86_64.exe for 64-hit Windows.

The native Windows tools will typically be a bit faster but more complicated to install, as you would
have to download the tools from different web sites and install and configure them individually.

You must have Cygwin installed

As there’s no Windows native bash version available, at least a basic installation of
Cygwin is required in any case. This may change in the future as packaging systems
such as NuGet and Chocolatey mature.

Although Cygwin consists of several separate packages, the installation and update is done through
asingle utility, setup-x86.exe or setup-x86_64.exe, which acts similarly to other web based installers.
Alternatively you can install Cygwin and its packages using Chocolatey.

Installing Cygwin using the Cygwin installer

You will find setup-x86.exe, for 32-bit systems, and setup-x86_64.exe, for 64-hit systems, at http://
www.cygwin.com/install.html. Click on the link for the appropriate setup utility to download it. After
the download completes, run it.

All tools will be installed into one base folder. The default is C:\cygwin.
The setup utility will ask you for some settings. The defaults should usually work well, at least initially.

If, at the "Choose A Download Source" page, you use the default "Install from Internet" setting, you
will need to choose a download site at the "Choose A Download Site" page. Seethelist of mirror sites
at http://cygwin.com/mirrors.html to choose a download site appropriate to your location.

At the "Select Packages' page, you'll need to select some additional packages, which are not installed
by default. Navigate to the required Category/Package row and click on the"Skip" item in the "New"
column so it shows a version number for the required package.

After clicking the Next button severa times the setup will then download and install the selected
packages (this may take awhile, depending on the package size).

Under: Sart#Programs#Cygwin#Cygwin Bash Shell you should now be able to start a new Cygwin
bash shell, which is similar to the standard Windows command line interpreters (command.com /
cmd.exe) but much more powerful.

Add/Update/Remove Cygwin Packages

If you want to add, update, or remove packages later you can do so by running the setup utility again.
At the "Select Packages' page, the entry in the "New" column will control what is done (or not) with
the package. If anew version of a package is available, the new version number will be displayed, so
it will be automatically updated. Y ou can change the current setting by simply clicking at it, it will
change between:

» A specific version number. This specific package version will beinstalled.
» Skip. Not installed, no changes.

» Keep. Already installed, no changes.

31

http://www.cygwin.com/install.html
http://www.cygwin.com/install.html
http://cygwin.com/mirrors.html

Tool Reference

4.4.3.

 Uninstall. Uninstall this package.

» Reinstall. Reinstall this package.

Installing Cygwin using Chocolatey

Chocolatey supports Cygwin as an external package source. To install Cygwin itself run

PS$>choco install cygw n
You might also need to install cyg-get:
PS$>choco install cyg-get

Chocolatey installs Cygwin in C:\tools\cygwin by default.

One or more Cygwin packages can be installed using "-source cygwin":

PS$>choco install sed asciidoc -source cygw n

4.5. GNU compiler toolchain (UNIX only)

4.5.1.

4.5.2.

gcc (GNU compiler collection)

The GCC C compiler is available for most of the UNIX-like platforms.

If GCC isn't dready installed or available as a package for your platform, you can get it at: http:/
gcc.gnu.org/.

After correct installation, typing at the bash command line prompt:

$ gcc --version

should result in something like
gcc (Ubuntu 4.9.1-16ubuntu6) 4.9.1
Copyright (C) 2014 Free Software Foundation, |nc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE.

Y our version string may vary, of course.

gdb (GNU project debugger)

GDB is the debugger for the GCC compiler. It isavailable for many (if not all) UNIX-like platforms.

If you don't like debugging using the command line there are some GUI frontends for it available,
most notably GNU DDD.

If gdb isn’t aready installed or available as a package for your platform, you can get it at: http:/
www.gnu.org/software/gdb/gdb.html.

After correct installation:

$ gdb --version

should result in something like:

GNU gdb (Ubuntu 7.8-1ubuntu4) 7.8.0.20141001-cvs

Copyright (C) 2014 Free Software Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permtted by law. Type "show copyi ng"
and "show warranty" for details.

This GDB was configured as "x86_64-1i nux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

32

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html

Tool Reference

4.5.3.

4.5.4.

<htt p://ww. gnu. or g/ sof t war e/ gdb/ bugs/ >.

Find the GDB nanual and ot her docunentation resources online at:
<htt p://ww. gnu. or g/ sof t war e/ gdb/ docunent ati on/ >.

For hel p, type "hel p".

Type "apropos word" to search for commands related to "word".

Y our version string may vary, of course.

ddd (GNU Data Display Debugger)

The GNU Data Display Debugger is agood GUI frontend for GDB (and alot of other command line
debuggers), so you have to install GDB first. It is available for many UNIX-like platforms.

If GNU DDD isn't dready installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/ddd/.

make (GNU Make)
Note

GNU Make is available for most of the UNIX-like platforms.

If GNU Make isn't already installed or available as a package for your platform, you can get it at:
http://www.gnu.org/software/make/.

After correct installation:

$ make --version

should result in something like:

G\U Make 4.0

Built for x86_64-pc-Ilinux-gnu

Copyright (C) 1988-2013 Free Software Foundation, Inc.

Li cence GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by |aw.

Y our version string may vary, of course.

4.6. Microsoft compiler toolchain (Windows
native)

4.6.1.

To compile Wireshark on Windows using the Microsoft C/C++ compiler, you'll need:
1. Ccompiler (cl . exe)

2. Assembler (m . exe for 32-bit targetsand M 64. exe for 64-bit targets)

3. Linker (I'i nk. exe)

4. C runtime headers and libraries (e.g. stdio.h, msvcrt.lib)

5. Windows platform headers and libraries (e.g. windows.h, WSock32.lib)

6. HTML help headers and libraries (htmlhelp.h, htmlhelp.lib)

Toolchain Package Alternatives

The Wireshark 2.0.x releases are compiled using Microsoft Visual C++ 2013. The official Wireshark
1.12.x and 1.10.x rel eases are compiled using Microsoft Visual C++ 2010 SP1. Theofficial 1.8 releases

33

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/make/

Tool Reference

4.6.2.

were compiled using Microsoft Visual C++ 2010 SP1 as well. The official 1.6, 1.4, and 1.2 releases
were compiled using Microsoft Visual C++ 2008 SP1. Other past releases, including the 1.0 branch,
were compiled using Microsoft Visual C++ 6.0.

Using the release compilersis recommended for Wireshark development work.

The older "Express Edition" compilers such as Visual C++ 2010 Express Edition SP1 can be used but
any PortableApps packages you create with them will require the installation of a separate Visual C
++ Redistributable package on any machine on which the PortableApps package is to be used. See
Section 4.6.4, “ C-Runtime "Redistributable” Files’ below for more details.

However, you might already have a different Microsoft C++ compiler installed. It should be possible
to use any of the following with the considerations listed:

Visual C++ 2013 Community Edition

IDE + Debugger? Yes

Purchase required? Free Download
SDK required for 64-bit builds? No

CMake Generator: Vi sual Studio 12

Visual C++ 2010 Express Edition
IDE + Debugger? Yes
Purchase required? Free Download
SDK required for 64-bit builds? Yes.
CMake Generator: Vi sual Studio 10

Remarks Installerscreated using express editionsrequireaC++ redistributable vcredist_x86.exe
(BMB free download) is required to build Wireshark-win32-2.1.x.exe, and
veredist_x64.exe is required to build Wireshark-win64-2.1.x.exe. The version of
veredist x86.exe or veredist x64.exe must match the version for your compiler
including any service packs installed for the compiler.]

Visual Studio 2010

IDE + Debugger? Yes
Purchase required? Yes
SDK required for 64-bit builds? No
CMake Generator: Vi sual Studi o 10

Remarks Building a 64-bit instaler requires a a C++ redistributable
(veredist_x86.exe).footnoteref[veredist]

Y ou can use Chocolatey to install Visual Studio, e.g:

PS:\> choco install Visual Studi oCommunity2013

cl.exe (C Compiler)

The following table gives an overview of the possible Microsoft toolchain variants and their specific
C compiler versions ordered by release date.

34

http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs#d-community
http://www.microsoft.com/express/Downloads/#Visual_Studio_2010_Express_Downloads

Tool Reference

4.6.3.

4.6.4.

Compiler Package cl.exe _MSC VER CRT DLL
Visual Studio 2013 12.0 1800 msver120.dll
Visua Studio 2010 10.0 1600 msvcr100.dll

After correct installation of thetool chain, typing at the Visual Studio Command line prompt (cmd.exe):
> cl
should result in something like:

M crosoft (R) C C++ Optimi zing Conpiler Version 18.00.31101 for x86
Copyright (C) Mcrosoft Corporation. Al rights reserved.

usage: cl [option...] filename... [/link Ilinkoption...
However, the version string may vary.

Documentation on the compiler can be found at Microsoft MSDN

link.exe (Linker)

After correct installation, typing at the Visual Studio Command line prompt (cmd.exe):
> 1ink
should result in something like:

M crosoft (R) Increnental Linker Version 12.00.31101.0
Copyright (C) Mcrosoft Corporation. Al rights reserved.

usage: LINK [options] [files] [@omrandfil e]

However, the version string may vary.

Documentation on the linker can be found at Microsoft MSDN

C-Runtime "Redistributable" Files

Please note: Thefollowing isnot legal advice - ask your preferred lawyer instead. It’ sthe authorsview
and this view might be wrong.

Depending on the Microsoft compiler version you use, some binary files coming from Microsoft
might be required to be installed on Windows machine to run Wireshark. On a developer machine,
the compiler setup installs these files so they are available - but they might not be available on a user
machine!

Thisisespecialy truefor the C runtimeDLL (msver*.dil), which containstheimplementation of ANSI
and alikefunctions, e.g.: fopen(), malloc(). The DLL isnamed like: msvcer’ version'.dll, an abbreviation
for "MicroSoft Visual C Runtime". For Wireshark to work, this DLL must be available on the users
machine.

Starting with MSV C7, it is necessary to ship the C runtime DLL (msvcr’ version'.dll) together with the
application installer somehow, asthat DLL is possibly not available on the target system.

Make sureyou’re allowed to distribute thisfile

Thefilesto redistribute must be mentioned in the redist.txt file of the compiler package.
Otherwise it can’t be legally redistributed by third parties like us.

Thefollowing MSDN link is recommended for the interested reader:

35

http://msdn.microsoft.com/en-us/library/wk21sfcf.aspx
http://msdn.microsoft.com/en-us/library/t2fck18t.aspx

Tool Reference

» Redistributing Visual C++ Files

In al cases where veredist x86.exe or veredist x64.exe is downloaded it should be downloaded to
the directory into which the support libraries for Wireshark have been downloaded and installed. This
directory is specified by the WIRESHARK_BASE DIR or WIRESHARK_LIB_DIR environment
variables. It need not, and should not, be run after being downloaded.

4.6.4.1. msvcr120.dll / veredist_x86.exe / vcredist_x64.exe -
Version 12.0 (2013)

There are three redistribution methods that MSDN mentions for MSVC 2013 (see: "Choosing a
Deployment Method"):

1. Using Visual C++ Redistributable Package. The Microsoft libraries are installed by copying
veredist_x64.exeor veredist_x86.exeto thetarget machine and executing it onthat machine(MSDN
recommends this for applications built with Visual Studio 2013)

2. Using Visual C++ Redistributable Merge Modules. (L oadable modules for building msi installers.
Not suitable for Wireshark’s NSIS based installer)

3. Install a particular Visual C++ assembly asa private assembly for the application. The Microsoft
librariesareinstalled by copying the folder content of Microsoft.VC120.CRT to the target directory
(e.g. C:\Program Files\Wireshark)

To save instaler size, and to make a portable version of Wireshark (which must be completely self-
contained, on amedium such asaflash drive, and not require that aninstaller be runtoinstall anything
on the target machine) possible, when building 32-bit Wireshark with M SV C2013, method 3 (copying
the content of Microsoft.VC120.CRT) is used (this produces the smallest package).

4.6.5. Windows (Platform) SDK

The Windows Platform SDK (PSDK) or Windows SDK is afree (asin beer) download and contains
platform specific headers and libraries (e.g. windows.h, WSock32.lib, etc.). As new Windows features
evolvein time, updated SDK’s become available that include new and updated APIs.

When you purchase a commercial Visual Studio or use the Community Edition, it will include an
SDK. The free Express (as in beer) downloadable C compiler versions (VC++ 2012 Express, VC++
2012 Express, etc.) do not contain an SDK — you'll need to download a PSDK in order to have the
required C header files and libraries.

Older versions of the SDK should also work. However, the command to set the environment settings
will be different, try search for SetEnv.* in the SDK directory.

4.6.6. HTML Help

HTML Helpisusedto create the User’ sand Developer’ s Guidein .chm format and to show the User’s
Guide as the Wireshark "Online Help".

Both features are currently optional, and might be removed in future versions.

4.6.6.1. HTML Help Compiler (hhc.exe)

This compiler is used to generate a.chm file from a bunch of HTML files—in our case to generate
the User’s and Developer’ s Guide in .chm format.

The compiler isonly available asthefree (asin beer) "HTML Help Workshop" download. If you want
to compile the guides yourself, you need to download and install this. If you don’t install it into the
default directory, you may also have alook at the HHC_DIR setting in the file docbook/Makefile.

36

http://msdn.microsoft.com/en-us/library/ms235299.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms235316(v=vs.120).aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms235316(v=vs.120).aspx

Tool Reference

4.6.6.2. HTML Help Build Files (htmlhelp.c / htmlhelp.lib)

4.6.7.

The files htmlhelp.c and htmlhelp.lib are required to be able to open .chm files from Wireshark and
show the online help. Both files are part of the SDK (standalone (P)SDK or MSV C since 2002).

Debugger

Using a good debugger can save you alot of development time.

The debugger you use must match the C compiler Wireshark was compiled with, otherwise the
debugger will simply fail or you will only see alot of garbage.

4.6.7.1. Visual Studio integrated debugger

Y ou can use the integrated debugger of Visual Studio if your toolchain includes it. Open the solution
in your build directory and build and debug as normal with a Visual Studio solution.

The normal build is an optimised release version so debugging can be a bit difficult as variables are
optimised out into registers and the execution order of statements can jump around.

If you require a non-optimised version, then build using a debug configuration.

4.6.7.2. Debugging Tools for Windows

You can also use the Microsoft Debugging Tools for Windows toolkit, which is a standalone GUI
debugger. Although it’ snot that comfortable compared to debugging with the Visual Studio integrated
debugger it can be helpful if you have to debug on a machine where an integrated debugger is not
available.

You can get it free of charge from Microsoft in several ways, see the Debugging tools for Windows
page.

Y ou can also use Chocolatey to install WinDbg:

PS:\ > choco install w ndbg

To debug Wireshark using WinDbg, open the built copy of Wireshark using the File _ Open
Executable... menu, i.e. C:\Development\wsbuild32\run\RelWithDeblnfo\Wireshark.exe. To set a
breakpoint open the required source file using the File _ Open Source File... menu and then click on
the required line and press F9. To run the program, press F5.

If you require a non-optimised version, then build using a debug configuration, e.g. nsbui I d /
m / p: Confi gurati on=Debug W reshark. sl n. The build products will be found in C:
\Devel opment\wsbuild32\run\Rel WithDebl nfo\.

4.7. bash

4.7.1.

The bash shell is needed to run severa shell scripts.

UNIX and Cygwin: GNU bash

The bash shell is available for most of the UNIX-like platforms and as the bash package from the
Cygwin setup.

If bash isn't already installed or available as a package for your platform, you can get it at http:/
www.gnu.org/software/bash/bash.html.

After correct installation, typing at the bash command line prompt:

37

http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063%28v=vs.85%29.aspx
http://www.gnu.org/software/bash/bash.html
http://www.gnu.org/software/bash/bash.html

Tool Reference

4.7.2.

$ bash --version

should result in something like:

G\U bash, version 3.1.17(6)-rel ease (i 686-pc-cygw n)
Copyright (C) 2005 Free Software Foundation, Inc.

However, the version string may vary.

Windows native:

This section not yet written

4.8. Python

Python is an interpreted programming language. The homepage of the Python project is http://
python.org/. It is used to generate some source files. Python 2.5 or later (including Python 3) should
work fine but Python 2.7 is recommended.

Python is either included or available as a package on most UNIX-like platforms. Windows
packages and source are available at http://python.org/download/. The Cygwin Python package is
not recommended since / usr / bi n/ pyt hon is a symbolic link, which causes confusion outside

Cygwin.

Y ou can aso use Chocolatey to install Python:

PS:\> choco install Python2

Chocolatey installs Python 2 into C:\tools\python2 by default. Y ou can verify your Python version
by running

$ python --version

on UNIX and Linux and

rem O ficial package

C. > cd python27

C. Pyt hon27> python --version
rem Chocol at ey

C. > cd \tool s\ pyt hon2
C:\t ool s\ pyt hon2> python --version

on Windows. Y ou should see something like

Python 2.7.9

Y our version string may vary of course.

4.9. Perl

4.9.1.

Perl is an interpreted programming language. The homepage of the Perl project is http://
www.perl.com. Perl is used to convert various text files into usable source code. Perl version 5.6 and
above should work fine.

UNIX and Cygwin: Perl

Perl is available for most of the UNIX-like platforms and as the perl package from the Cygwin setup.

38

http://python.org/
http://python.org/
http://python.org/download/
http://www.perl.com
http://www.perl.com

Tool Reference

If perl isn't aready installed or available as a package for your platform, you can get it at http:/
www.perl.com/.

After correct installation, typing at the bash command line prompt:

$ perl --version

should result in something like:

This is perl, v5.8.7 built for cygw n-thread-nulti-64int
(wWith 1 registered patch, see perl -V for nore detail)

Copyright 1987-2005, Larry Wal

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Conpl et e docunentation for Perl, including FAQIlists, should be found on
this systemusing “nman perl' or “perldoc perl'. |If you have access to the
Internet, point your browser at http://ww.perl.com, the Perl Hone Page

However, the version string may vary.

4.10. sed

Sed it the streaming editor. It makes it easy for example to replace text inside a source code file. The
Wireshark build process uses this to stamp version strings in various places.

4.10.1. UNIX and Cygwin: sed

Sed is available for most of the UNIX-like platforms and as the sed package from the Cygwin setup.
It is also available via Chocolatey:

PS$>choco install sed -source cygw n

If sed isn't dready installed or available as a package for your platform, you can get it at http:/
directory.fsf.org/GNU/sed.html

After correct installation, typing at the bash command line prompt:

$ sed --version

should result in something like:

G\U sed version 4.1.5

Copyright (C) 2003 Free Software Foundation, Inc

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE
to the extent pernitted by |aw.

However, the version string may vary.

4.10.2. Windows native: sed

A native Windows sed package can be obtained from http://gnuwin32.sourceforge.net/. The
installation should be straightforward. A Chocolatey package (devbox-sed) is available but has not
been tested.

4.11. Bison

Bison is a parser generator used for some of Wireshark’s file format support.

39

http://www.perl.com/
http://www.perl.com/
http://directory.fsf.org/GNU/sed.html
http://directory.fsf.org/GNU/sed.html
http://gnuwin32.sourceforge.net/

Tool Reference

4.11.1. UNIX or Cygwin: bison

Bison isavailable for most UNIX-like platforms and as the bison package from Cygwin. See the next
section for native Windows options.

If GNU Bisonisn’t already installed or available as a package for your platform you can get it at: http:
[lwww.gnu.org/software/bison/bison.html.

After correct installation running the following

$ bison --version

should result in something like:

bi son (G\U Bi son) 2.3
Witten by Robert Corbett and R chard Stall man.

Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE

Your version string may vary.

4.11.2. Windows Native: Win flex-bison and bison

A native Windows version of bison is availablein the winflexbison Chocolatey package. Note that the
executable isnamed wi n_bi son.

Native packages are available from other sources such as GnuWin. They aren't officially supported
but should work.

4.12. Flex

Flex isalexical analyzer generator used for Wireshark’s display filters, some file formats, and other
features.

4.12.1. UNIX or Cygwin: flex

Flex is available for most UNIX-like platforms and as the flex package from Cygwin. See the next
section for native Windows options.

If GNU flex isn't aready installed or available as a package for your platform you can get it at http:
[lwww.gnu.org/software/flex/.

After correct installation running the following

$ flex --version
should result in something like:
flex version 2.5.4

Y our version string may vary.

4.12.2. Windows Native: Win flex-bison and flex

A native Windows version of flex is available in the winflexbison Chocolatey package. Note that the
executableisnamedwi n_f | ex.

PS:\ >choco install wi nflexbison

Native packages are available from other sources such as GnuWin. They aren't officially supported
but should work.

40

http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html
https://chocolatey.org/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/flex/
http://www.gnu.org/software/flex/
https://chocolatey.org/
http://gnuwin32.sourceforge.net/packages/flex.htm

Tool Reference

4.13.

Git client

The Wireshark project uses its own Git repository to keep track of all the changes done to the source
code. Details about the usage of Git in the Wireshark project can be found in Section 3.2, “The
Wireshark Git repository”.

If you want to work with the source code and are planning to commit your changes back to the
Wireshark community, it is recommended to use a Git client to get the latest sourcefiles. For detailed
information about the different ways to obtain the Wireshark sources, see Section 3.3, “Obtain the
Wireshark sources’.

You will find more instructions in Section 3.3.1, “Git over SSH or HTTPS’ on how to use the Git
client.

4.13.1. UNIX or Cygwin: git

Git isavailable for most of the UNIX-like platforms and as the Git package from the Cygwin setup

If Gitisn't already installed or available as a package for your platform, you can get it at: http://git-
scm.comy/.

After correct installation, typing at the bash command line prompt:
$ git --version

should result in something like:

git version 1.8.3.4

Your version will likely be different.

4.13.2. Windows native: git

4.14.

4.15.

The Git command line tools for Windows can be found at http://git-scm.com/download/win and can
also beinstalled using Chocolatey:

PS:\> choco install git

After correct installation, typing at the command line prompt (cmd.exe):
$ git --version

should result in something like:

git version 1.8.3.4

However, the version string may vary.

Git Powershell Extensions (optional)

A useful tool for command line git on Windowsis PoshGit. Poshgit provides git command compl etion
and alters the prompt to indicate the local working copy status. Y ou caninstall it using Chocolatey:

PS:\ >choco install poshgit

Git GUI client (optional)

Along with the traditional command-line client, several GUI clients are available for a number of
platforms. See http://git-scm.com/downloads/quis for details.

41

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/download/win
https://github.com/dahlbyk/posh-git
http://git-scm.com/downloads/guis

Tool Reference

4.16. patch (optional)

The patch utility is used to merge a diff file into your own source tree. This tool is only needed, if
you want to apply a patch (diff file) from someone else (probably from the developer mailing list) to
try out in your own private source tree.

It most cases you may not need the patch tool installed. Git and Gerrit should handle patches for you.

You will find more instructions in Section 3.10, “Apply a patch from someone else’on how to use
the patch tool.

4.16.1. UNIX and Cygwin: patch

Patch is available for most of the UNIX-like platforms and as the patch package from the Cygwin
setup.

If GNU patchisn’t aready installed or available as a package for your platform, you can get it at http:
[Iwww.gnu.org/software/patch/patch.html.

After correct installation, typing at the bash command line prompt:

$ patch --version

should result in something like:

patch 2.5.8
Copyright (C 1988 Larry Wall
Copyright (C 2002 Free Software Foundation, Inc.

This program cones with NO WARRANTY, to the extent pernmitted by |aw
You may redistribute copies of this program

under the ternms of the GNU General Public License.

For nore informati on about these matters, see the file nanmed COPYI NG

witten by Larry Wall and Paul Eggert

However, the version string may vary.

4.16.2. Windows native: patch

The Windows native Git tools provide patch. A native Windows patch package can be obtained from
http://gnuwin32.sourceforge.net/. The installation should be straightforward.

4.17. Windows: NSIS (optional)

4.18.

The NSIS (Nullsoft Scriptable Install System) is used to generate wireshark-win32-2.1.x.exe from al
the files needed to be installed, including all required DLLS, plugins, and supporting files.

Toinstall it, download the latest released version (currently 2.46) from http://nsis.sourceforge.net and
start the downloaded installer. Y ou will need NSIS version 2. Version 3 is not yet supported. Y ou can
alsoinstal it using Chocolatey:

PS$> choco install nsis

Y ou can find more instructions on using NSISin Section 3.11.4, “Win32: NSIS .exe installer”.

Windows: PortableApps (optional)

The PortableApps.com Installer is used to generate WiresharkPortable-2.1.paf.exe from all the files
needed to be installed, including all required DLLSs, plugins, and supporting files.

42

http://www.gnu.org/software/patch/patch.html
http://www.gnu.org/software/patch/patch.html
http://gnuwin32.sourceforge.net/
http://nsis.sourceforge.net

Tool Reference

Toinstall it, do the following:

» Download the latest PortableApps.com Platform release from http://portabl eapps.com/.

* Install the following applications in the PortableApps.com environment:

PortableApps.com Installer

Portabl eApps.com Launcher

NSIS Portable (Unicode)

Portabl eApps.com AppCompactor

Y ou can find more instructions on using the PortableApps.com Installer in Section 3.11.5, “Win32:
PortableApps .paf .exe package” .

43

http://portableapps.com/

Chapter 5. Library Reference

5.1. Introduction

Severad libraries are needed to build and run Wireshark. Most of them are split into three packages:
1. Runtime. System and third party libraries such as MSVCR110.dll and libglib-2.0-0.dl.
2. Developer. Documentation, header files, import libraries, and other files needed for compilation.

3. Source. Library sources, which are usually not required to build Wireshark.

Our librariesarefreely available

All libraries required to build Wireshark on Windows are available for download
at https.//anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages’ and https.//
anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/. See Section 5.3, “Win32:
Automated library download” for an easier way to install them.

5.2. Binary library formats

5.2.1.

5.2.2.

5.2.3.

Binary libraries are available in different formats, depending on the C compiler used to build it and
of course the platform they were built for.

Unix
If you have installed unix binary libraries on your system, they will match the C compiler. If not

already installed, the libraries should be available as a package from the platform installer, or you can
download and compile the source and then install the binaries.

Win32: MSVC

Most of the Win32 binary libraries you will find on the web are in this format. You will recognize
MSVC libraries by the .lib/.dll file extension.

Win32: cygwin gcc

Cygwin provides most of the required libraries (with file extension .a or .lib) for Wireshark suitable
for cygwin’s gcc compiler.

5.3. Win32: Automated library download

Therequired libraries (apart from Qt) are automatically downloaded as part of the CMake generation
step, and subsequently as required when libraries are updated.

The libraries are downloaded into the directory indicated by the environment variable
WIRESHARK_BASE DIR, this must be set appropriately for your environment. The
libraries are downloaded and extracted into WIRESHARK BASE DIR\wireshark-win32-libs and
WIRESHARK_BASE DIR\wireshark-win64-libs for 32 and 64 bit builds respectively.

You may aso directly set the library directory with the environment variable
WIRESHARK_LIB_DIR, but if you switch between 32 bit and 64 bit builds, the value of this must
be set appropriately.

https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/

Library Reference

5.4, Qt

5.4.1.

5.4.2.

The Qt library is used to build the Ul for Wireshark and is used to provide a platform independent Ul.
For more information on the Qt libraries, see Section 12.2, “The Qt Application Framework” .

Unix
TBD.

Win32 MSVC

Qt5 must be installed manually, from the Qt installers page http://www.qt.io/downl oad-open-source/
#section-2, using the version of Qt appropriate for your compiler. Note that separate installations
(into different directories) of Qt are required for 32 bit and 64 bit builds. The environment variable
QT5_BASE DIR should be set as appropriate for your environment and should point to the Qt
directory that contains the bin directory, e.g. C:\Qt\Qt5.5.0\5.5\msvc2013

5.5. GTK+/ GLib / GDK / Pango / ATK / GNU
gettext / GNU libiconv

5.5.1.

5.5.2.

The Glib library is used as a basic platform abstraction library, it's not related to graphical user
interface (GUI) things. For a detailed description about GLib, see Section 7.3, “The GLib library”.

The GTK and its dependent libraries are used to build the older, deprecated, Wireshark GUI. For a
detailed description of the GTK libraries, see Section 12.3, “The GTK library”.

All other libraries are dependent on the two libraries mentioned above, you will typically not comein
touch with these while doing Wireshark development.

As the requirements for the GLib/GTK libraries have increased in the past, the required additional
libraries depend on the GLib/GTK versions you have. The 2.x versionsrequire all mentioned libs.

Unix
The GLib/GTK+ libraries are available for many unix-like platforms and Cygwin.

If these libraries aren’t already installed and also aren't avail able as a package for your platform, you
can get them at http://www.gtk.org/download.html.

Win32 MSVC

Y ou can get the latest version at http://www.gtk.org/download.html.

5.6. SMI (optional)

5.6.1.

LibSMI isused for MIB and PIB parsing and for OID resolution.
Unix

If thislibrary isn’t already installed or available as a package for your platform, you can get it at http:
[Iwww.ibr.cs.tu-bs.de/projects/libsmi/.

45

http://www.qt.io/download-open-source/#section-2
http://www.qt.io/download-open-source/#section-2
http://www.gtk.org/download.html
http://www.gtk.org/download.html
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://www.ibr.cs.tu-bs.de/projects/libsmi/

Library Reference

5.6.2. Win32 MSVC

Wireshark uses the source |ibSMI distribution at http://www.ibr.cs.tu-bs.de/projects/libsmi/.
LibSMI is cross-compiled using MinGW32. It's stored in the libsmi zip archive at https.//
anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/.

5.7. c-ares (optional)

C-Ares is used for asynchronous DNS resolution. This is the primary name resolution library in
Wireshark.

5.7.1. Unix

If thislibrary isn’t already installed or avail able as a package for your platform, you can get it at http:
[[c-ares.haxx.sel.

5.7.2. Win32 MSVC

C-Ares is cross-compiled using MinGW32 and is available at https.//anonsvn.wireshark.org/
wireshark-win32-libs/trunk/packages/.

5.8. zlib (optional)

Zlib is designed to be a free, general-purpose, legally unencumbered — that is, not
covered by any patents— lossless data-compression library for use on virtually any
computer hardware and operating system.

— The zlib web site http: //imww.Zlib.net/

5.8.1. Unix

This library is almost certain to be installed on your system. If it isn’t or you don’t want to use the
default library you can download it from http://www.zlib.net/.

5.8.2. Win32 MSVC

The zlib sources are downloaded from https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/
packages/ and compiled locally.

5.9. libpcap/WinPcap (optional)

Libpcap and WinPcap provide that packet capture capabilities that are central to Wireshark’s core
functionality.

5.9.1. Unix: libpcap

If thislibrary isn't aready installed or available as a package for your platform, you can get it at http:
[lwvww.tcpdump.org/.

5.9.2. Win32 MSVC: WinPcap

Y ou can get the "Windows packet capture library" at: https.//www.winpcap.org/install/

46

http://www.ibr.cs.tu-bs.de/projects/libsmi/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://c-ares.haxx.se/
http://c-ares.haxx.se/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://www.gzip.org/zlib/zlib_license.html
http://www.zlib.net/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://www.tcpdump.org/
http://www.tcpdump.org/
https://www.winpcap.org/install/

Library Reference

5.10. GnuTLS (optional)

The GNU Transport Layer Security Library is used to dissect SSL and TLS protocols (aka: HTTPS).

5.10.1. Unix

If thislibrary isn’t already installed or available as a package for your platform, you can get it at https:
[lwww.gnu.org/software/gnutls/downl oad.html.

5.10.2. Win32 MSVC

We provide a package cross-compiled using MinGW32 at https://anonsvn.wireshark.org/wireshark-
win32-libs/trunk/packages/.

5.11. Gerypt (optional)

The Gerypt Library isalow-level encryption library that provides support for many ciphers, such as
DES, 3DES, AES, Blowfish, and others..

5.11.1. Unix

If thislibrary isn’t already installed or available as a package for your platform, you can get it at https:
[[directory.fsf.org/wiki/Libgcrypt.

5.11.2. Win32 MSVC

Part of our GnuTLS package.

5.12. Kerberos (optional)

The Kerberos library is used to dissect Kerberos, sealed DCERPC and securel DAP protocols.

5.12.1. Unix
If thislibrary isn’t already installed or avail able as a package for your platform, you can get it at http:
[Iweb.mit.edu/K erberos/dist/.

5.12.2. Win32 MSVC

We provide a package at https.//anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/.

5.13. LUA (optional)

The LUA library is used to add scripting support to Wireshark.

5.13.1. Unix

If thislibrary isn’t already installed or available as a package for your platform, you can get it at http:
[Iwww.lua.org/download.html.

5.13.2. Win32 MSVC

We provide a copy of the official package at https.//anonsvn.wireshark.org/wireshark-win32-libs/
trunk/packages/.

47

https://www.gnu.org/software/gnutls/download.html
https://www.gnu.org/software/gnutls/download.html
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://directory.fsf.org/wiki/Libgcrypt
https://directory.fsf.org/wiki/Libgcrypt
http://web.mit.edu/Kerberos/dist/
http://web.mit.edu/Kerberos/dist/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://www.lua.org/download.html
http://www.lua.org/download.html
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/

Library Reference

5.14. PortAudio (optional)

The PortAudio library enables audio output for RTP streams.

5.14.1. Unix

If thislibrary isn’'t already installed or available as a package for your platform, you can get it at http:
[lwww.portaudio.com/downl oad.html.

5.14.2. Win32 MSVC

The PortAudio sources are downloaded from https.//anonsvn.wireshark.org/wireshark-win32-libs/
trunk/packages/ and compiled locally.

5.15. GeolP (optional)

MaxMind Inc. publishes a Geol P database for use in open source software. It can be used to map |P
addresses to geographical locations.

5.15.1. Unix

If thislibrary isn’t already installed or avail able as a package for your platform, you can get it at http:
[Iwww.maxmind.com/app/c.

5.15.2. Win32 MSVC

We provide a package cross-compiled using MinGW32 at https://anonsvn.wireshark.org/wireshark-
win32-libs/trunk/packages/.

5.16. WinSparkle (optional)

WinSparkle is an easy-to-use software update library for Windows devel opers.

5.16.1. Win32 MSVC

We provide acopy of the WinSparkle package at https.//anonsvn.wireshark.org/wireshark-win32-libs/
trunk/packages/.

48

http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://www.maxmind.com/app/c
http://www.maxmind.com/app/c
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
https://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/

Part Il. Wireshark Development

Wireshark Development

The second part describes how the Wireshark sources are structured and how to change the sources such as adding
anew dissector.

Chapter 6. How Wireshark Works

6.1. Introduction

This chapter will give you a short overview of how Wireshark works.

6.2. Overview

The following will give you asimplified overview of Wireshark’s function blocks:

Figure 6.1. Wireshark function blocks

Thisimageis out of date. It is missing the utility library in wsutil and the Qt Ul in ui/qt.

The function blocksin more detail: GTK+ 2:: Handling of al user input/output (all windows, dialogs
and such). Source code can be found in the ui/gtk directory.

Core

Epan

Wiretap

Capture

Dumpcap

WinPcap and libpcap

Main "glue code" that holds the other blocks together. Source code
can be found in the root directory.

Ethereal Packet ANalyzer — the packet analyzing engine. Source
code can be found in the epan directory. Epan provides the
following APIs:

* Protocol Tree. Dissection information for an individual packet.
« Dissectors. The various protocol dissectorsin epan/dissectors.

e Dissector Plugins - Support for implementing dissectors as
separate modules. Source code can be found in plugins.

» Display Filters - The display filter engine at epan/dfilter.

Thewiretap library isused to read and write capture filesin libpcap,
pcapng, and many other file formats. Source code is in the wiretap
directory.

The interface with the capture engine. Source code is in the root
directory.

The captureengineitself. Thisisthe only part that isto execute with
elevated privileges. Source codeisin theroot directory.

These are separate librariesthat provide packet capture and filtering
support on different platforms. The filtering WinPcap and libpcap
works at a much lower level than Wireshark’s display filters and
uses a significantly different mechanism. That's why we have
different display and capture filter syntaxes.

6.3. Capturing packets

Capturing takes packets from a network adapter and saves them to afile on your hard disk.

50

How Wireshark Works

Since raw network adapter access requires elevated privileges these functions are isolated into the
dunpcap program. It's only this program that needs these privileges, allowing the main part of the
code (dissectors, user interface, etc) to run with normal user privileges.

To hide all the low-level machine dependent details from Wireshark, the libpcap and WinPcap
(see Section 5.9, “libpcap/WinPcap (optional)”) libraries are used. These libraries provide a general
purpose interface to capture packets and are used by awide variety of applications.

6.4. Capture Files

Wireshark can read and write capture filesin its natural file formats, pcapng and pcap, which are used
by many other network capturing tools, such as tcpdump. In addition to this, as one of its strengths,
Wireshark can read and write files in many different file formats of other network capturing tools.
The wiretap library, devel oped together with Wireshark, provides a genera purpose interface to read
and write al the file formats. If you need to add support for another capture file format this is the
place to start.

6.5. Dissect packets

While Wireshark is loading packets from afile each packet is dissected. Wireshark tries to detect the
packet type and gets as much information from the packet as possible. In this run though, only the
information shown in the packet list pane is needed.

As the user selects a specific packet in the packet list pane this packet will be dissected again. This
time, Wireshark tries to get every single piece of information and put it into the packet details pane.

51

Chapter 7. Introduction

7.1. Source overview

Wireshark consists of the following major parts:

» Packet dissection - in the /epan/dissector and /plugin/* directories

File 1/O - using Wireshark’s own wiretap library
» Capture - using the libpcap/winpcap library, in /wiretap

» User interface - using the Qt or GTK+ and associated libraries

Utilities - miscellaneous helper code

» Help - using an externa web browser and GTK text output

7.2. Coding Style

The coding style guides for Wireshark can be found in the "Code style" section of the file doc/
README.devel oper.

7.3. The GLIib library

Glibisused as abasic platform abstraction library. It doesn’'t provide any direct GUI functionality.
To quote the Glib Reference Manual:

GLib provides the core application building blocks for libraries and applications
written in C. It provides the core object system used in GNOME, the main loop
implementation, and a large set of utility functions for strings and common data
structures.

GLib contains lots of useful things for platform independent development. See https.//
developer.gnome.org/glib/ for details about GLib.

52

https://developer.gnome.org/glib/
https://developer.gnome.org/glib/

Chapter 8. Packet capturing

This chapter needs to be reviewed and extended.

8.1. How to add a new capture type to libpcap

The following is an updated excerpt from a developer mailing list mail about adding 1SO 9141 and
14230 (simple serial line card diagnostics) to Wireshark:

For libpcap, the first thing you'd need to do would be to get DLT_* values for al the link-layer
protocols you' d need. If 1SO 9141 and 14230 use the same link-layer protocol, they might be able to
shareaDLT_* value, unlessthe only way to know what protocolsare running abovethelink layer isto
know which link-layer protocol is being used, in which case you might want separate DLT_* values.

For the rest of the libpcap discussion, I'll assume you' re working with libpcap 1.0 or later and that
thisis on a UN*X platform. You probably don’t want to work with a version older than 1.0, even
if whatever OS you're using happens to include libpcap - older versions are not as friendly towards
adding support for devices other than standard network interfaces.

Then you' d probably add to the pcap_open_I i ve() routine, for whatever platform or platforms
this code should work, something such as a check for device names that look like serial port names
and, if the check succeeds, a call to aroutine to open the serial port.

See, for example, the#i f def HAVE _DAG_API codein pcap-linux.c and pcap-bpf.c.

The serial port open routine would open the serial port device, set the baud rate and do anything else
needed to openthedevice. It'd allocateapcap_t , setitsf d member to thefile descriptor for the serial
device, set the snapshot member to the argument passed to the open routine, set thel i nkt ype
member to one of the DLT_* values, and set thesel ect abl e_f d member to the same value asthe
f d member. It should also set thedl t _count member to the number of DLT_* valuesto support,
and alocatean array of dl t _count u_int+s, assign it to the +dlt_list member,
and fill inthat list with all the DLT_* values.

You'd then set the various * _op fieldsto routines to handle the operationsin question. r ead_op is
the routine that’d read packets from the device. i nj ect _op would be for sending packets; if you
don't care about that, you'd set it to a routine that returns an error indication. set fi |l t er _op can
probably just besettoi nst al | _bpf _programset _dat al i nk would just setthel i nkt ype
member to the specified value if it's one of the values for OBD, otherwise it should return an error.
get nonbl ock_op can probably be set to pcap_get nonbl ock_f d. set nonbl ock_op can
probably be set to pcap_set nonbl ock_f d. st at s_op would be set to a routine that reports
statistics. ¢l ose_op can probably be set to pcap_cl ose_conmon.

If there smorethan one DLT_* value, you definitely wantaset _dat al i nk routine so that the user
can select the appropriate link-layer type.

For Wireshark, you'd add support for those DLT_* values to wiretap/libpcap.c, which might mean
adding one or more WI'AP_ENCAP types to wtap.h and to the encap_t abl e[] table in wiretap/
wtap.c. You'd then have to write a dissector or dissectors for the link-layer protocols or protocols
and have them register themselves with the wt ap_encap dissector table, with the appropriate
WI'AP_ENCAP values by calling di ssect or _add_uint ().

53

Chapter 9. Packet dissection

9.1. How it works

Each dissector decodes its part of the protocol, and then hands off decoding to subsequent dissectors
for an encapsul ated protocol.

Every dissection starts with the Frame dissector which dissects the packet details of the capture file
itself (e.g. timestamps). From there it passes the data on to the lowest-level data dissector, e.g. the
Ethernet dissector for the Ethernet header. The payload is then passed on to the next dissector (e.g. IP)
and so on. At each stage, details of the packet will be decoded and displayed.

Dissection can be implemented in two possible ways. One is to have a dissector module compiled
into the main program, which meansiit’s always available. Another way isto make a plugin (a shared
library or DLL) that registersitself to handle dissection.

There is little difference in having your dissector as either a plugin or built-in. On the Windows
platform you have limited function access through the ABI exposed by functions declared as
WS DLL_PUBLIC.

The big plusisthat your rebuild cycle for a plugin is much shorter than for a built-in one. So starting
with a plugin makes initial development simpler, while the finished code may make more sense as
a built-in dissector.

Read READM E.dissector

The file doc/README.dissector contains detailed information about implementing a
dissector. In many casesit is more up to date than this document.

9.2. Adding a basic dissector

9.2.1.

Let’'s step through adding a basic dissector. We'll start with the made up "foo" protocol. It consists
of the following basic items.

» A packet type - 8 bits, possible values: 1 - initialisation, 2 - terminate, 3 - data.
» A set of flags stored in 8 bits, 0x01 - start packet, 0x02 - end packet, 0x04 - priority packet.
* A seguence number - 16 bits.

e An|Pv4 address.

Setting up the dissector

Thefirst decision you need to make isif this dissector will be abuilt-in dissector, included in the main
program, or a plugin.

Plugins are the easiest to write initially, so let’s start with that. With alittle care, the plugin can be
made to run as a built-in easily too so we haven't lost anything.

Example 9.1. Dissector Initialisation.

#i nclude "config. h"

#i ncl ude <epan/ packet. h>

#define FOO_PORT 1234

Packet dissection

static int proto_foo = -1;

voi d
proto_regi ster_foo(void)
{

proto_foo = proto_register_protocol (

"FQO Protocol", /* nane */
"FOO', /* short nanme */

00" /* abbrev */
)
}

Let’s go through this a bit at atime. First we have some boilerplate include files. These will be pretty
constant to start with.

Next we have an int that isinitialised to - 1 that records our protocol. Thiswill get updated when we
register this dissector with the main program. It's good practice to make al variables and functions
that aren’t exported static to keep name space pollution down. Normally thisisn’t a problem unless
your dissector gets so big it hasto span multiple files.

Then a#def i ne for the UDP port that carries foo traffic.

Now that we have the basics in place to interact with the main program, we'll start with two protocol
dissector setup functions.

First we'll call prot o_regi ster_protocol () which registers the protocol. We can give it
three names that will be used for display in various places. The full and short name are used in e.g.
the "Preferences’ and "Enabled protocols’ dialogs as well as the generated field name list in the
documentation. The abbreviation is used as the display filter name.

Next we need a handoff routine.

Example 9.2. Dissector Handoff.

voi d
prot o_reg_handof f_foo(voi d)

{

static dissector_handle_t foo_handl e;

foo_handl e = create_di ssector_handl e(di ssect _foo, proto_foo);
di ssector_add_ui nt ("udp. port", FOO PORT, foo_handle);
}

What's happening here? We are initiadlising the dissector. First we create a dissector handle; It is
associated with the foo protocol and with a routine to be called to do the actual dissecting. Then we
associate the handle with a UDP port number so that the main program will know to call us when it
gets UDP traffic on that port.

The standard Wireshark dissector convention is to put proto_regi ster_foo() and
proto_reg_handof f _f oo() asthelast two functionsin the dissector source.

Now at last we get to write some dissecting code. For the moment we'll leaveit asabasic placeholder.

Example 9.3. Dissection.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
col _set _str(pi nfo->cinfo, COL_PROTOCCOL, "FOO');
/* Clear out stuff in the info colum */
col _cl ear (pi nf o->ci nfo, COL_I NFO) ;

}

Thisfunctionis called to dissect the packets presented to it. The packet datais held in a specia buffer
referenced here as tvh. We shall become fairly familiar with this as we get deeper into the details of

55

Packet dissection

9.2.2.

the protocol. The packet info structure contains general data about the protocol, and we can update
information here. The tree parameter is where the detail dissection takes place.

For now we'll do the minimum we can get away with. In the first line we set the text of this to our
protocol, so everyone can seeit’ s being recognised. The only other thing we do isto clear out any data
in the INFO column if it’s being displayed.

At this point we should have a basic dissector ready to compile and install. It doesn’t do much at
present, other than identify the protocol and label it.

In order to compile this dissector and create a plugin a couple of support files are required, besides
the dissector source in packet-foo.c:

» Makefile.am - The UNIX/Linux makefile template.

» Makefile.common - Contains the file names of this plugin.

» CMakeligts.txt - Contains the CMake file and version info for this plugin.
» moduleinfo.h - Contains plugin version information.

* packet-foo.c - Y our dissector source.

 plugin.rc.in - Contains the DLL resource template for Windows.

You can find a good example for these files in the gryphon plugin directory. Makefile.common and
Makefile.am have to be modified to reflect the relevant files and dissector name. CMakeL.ists.txt hasto
be modified with the correct plugin name and version info, along with the relevant filesto compile. In
the main top-level source directory, copy CMakeL istsCustom.txt.example to CMakeCustomL ists.txt
and add the path of your plugin to thelistin CUSTOM_PLUGIN_SRC_DIR.

Compile the dissector to aDLL or shared library and either run Wireshark from the build directory as
detailed in Section 3.6, “Run generated Wireshark” or copy the plugin binary into the plugin directory
of your Wireshark installation and run that.

Dissecting the details of the protocol

Now that we have our basic dissector up and running, let’s do something with it. The simplest thing to
doto start with isto just l1abel the payload. Thiswill allow usto set up some of the partswe will need.

The first thing we will do is to build a subtree to decode our results into. This helps to keep things
looking nice in the detailed display. Now the dissector is called in two different cases. In one case it
iscalled to get asummary of the packet, in the other caseit is called to look into details of the packet.
These two cases can be distinguished by the tree pointer. If the tree pointer is NULL, then we are
being asked for a summary. If it is non NULL, we can pick apart the protocol for display. So with
that in mind, let’s enhance our dissector.

Example 9.4. Plugin Packet Dissection.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

col _set_str(pi nfo->cinfo, COL_PROTOCCOL, "FOO');
/* Clear out stuff in the info colum */
col _cl ear (pi nf o->ci nfo, COL_I NFO) ;

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
ti = proto_tree_add_item(tree, proto_foo, tvb, 0, -1, ENC_NA);

56

Packet dissection

What we're doing here is adding a subtree to the dissection. This subtree will hold all the details of
this protocol and so not clutter up the display when not required.

We are also marking the area of data that is being consumed by this protocol. In our caseit's al that
has been passed to us, as we're assuming this protocol does not encapsulate another. Therefore, we
add the new treenodewithprot o_tree_add_i t enm() , addingit to the passedintree, label it with
the protocol, use the passed in tvb buffer as the data, and consume from 0 to the end (-1) of this data.
ENC_NA ("not applicable") is specified as the "encoding" parameter.

After this change, there should be a label in the detailed display for the protocol, and selecting this
will highlight the remaining contents of the packet.

Now let's go to the next step and add some protocol dissection. For this step we'll need
to construct a couple of tables that help with dissection. This needs some additions to the
proto_register foo() function shown previously.

Two statically allocated arrays are added at the beginning of pr ot o_r egi st er _f oo() . Thearrays
are then registered after the call to pr ot o_r egi st er _pr ot ocol ().

Example 9.5. Registering data structures.

voi d

proto_register_foo(void)

{

static hf_register_info hf[] = {
{ &hf_foo_pdu_type,

{ "FOO PDU Type", "foo.type",
FT_UI NT8, BASE_DEC,
NULL, 0xO,
NULL, HFILL }

3

/* Setup protocol subtree array */
static gint *ett[] = {

&ett _foo

H

proto_foo = proto_register_protocol (
"FOO Protocol", /* nane */
"FOO', /* short name */

00" /* abbrev */
)
proto_register_field_array(proto_foo, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));

}

Thevariableshf _foo_pdu_type andett f oo alsoneedto be declared somewhere near the top
of thefile.

Example 9.6. Dissector data structure globals.
static int hf_foo_pdu_type = -1;
static gint ett_foo = -1;

Now we can enhance the protocol display with some detail.

Example 9.7. Dissector starting to dissect the packets.

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;

ti = proto_tree_add_item(tree, proto_foo, tvb, 0, -1, ENC_NA);
foo_tree = proto_item add_subtree(ti, ett_foo);

57

Packet dissection

proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, 0, 1, ENC Bl G ENDI AN);
}

Now the dissection is starting to look more interesting. We have picked apart our first bit of the
protocol. One byte of data at the start of the packet that defines the packet type for foo protocol.

Theproto_item add _subtree() cal has added a child node to the protocol tree which is
where we will do our detail dissection. The expansion of this node is controlled by theett f oo
variable. This remembers if the node should be expanded or not as you move between packets.
All subsequent dissection will be added to this tree, as you can see from the next call. A call to
proto_tree_add iten() inthefoo tree thistimeusing thehf foo_pdu_t ype to control
the formatting of the item. The pdu type is one byte of data, starting at 0. We assume it isin network
order (also called big endian), so that iswhy we use ENC_BI G_ENDI AN. For a 1-byte quantity, there
is no order issue, but it is good practice to make this the same as any multibyte fields that may be
present, and as we will see in the next section, this particular protocol uses network order.

If welook in detail at thehf f oo_pdu_t ype declaration in the static array we can see the details
of the definition.

» hf_foo_pdu_type - Theindex for this node.
» FOO PDU Type - Thelabel for thisitem.

« foo.type - Thisis the filter string. It enables us to type constructs such asf 0o. t ype=1 into the
filter box.

» FT_UINTS8 - This specifies this item is an 8bit unsigned integer. This tallies with our call above
where we tdll it to only look at one byte.

* BASE_DEC - Tor an integer type, this tells it to be printed as a decimal number. It could be
hexadecimal (BASE_HEX) or octal (BASE_OCT) if that made more sense.

WEe Il ignore the rest of the structure for now.
If you install this plugin and try it out, you'll see something that begins to look useful.

Now let’ sfinish off dissecting the simple protocol. We need to add afew more variablesto the hfarray,
and a couple more procedure calls.

Example 9.8. Wrapping up the packet dissection.

static int hf_foo_flags = -1;
static int hf_foo_sequenceno = -1;
static int hf_foo_initialip = -1;

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
gint offset = O;

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;

ti = proto_tree_add_item(tree, proto_foo, tvb, 0, -1, ENC_NA);

foo_tree = proto_item add_subtree(ti, ett_foo);

proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, offset, 1, ENC _BI G ENDI AN);
of fset += 1,

proto_tree_add_iten(foo_tree, hf_foo_flags, tvb, offset, 1, ENC Bl G END AN);

of fset += 1,

proto_tree_add_iten(foo_tree, hf_foo_sequenceno, tvb, offset, 2, ENC_BI G ENDI AN);
of fset += 2;

58

Packet dissection

9.2.3.

proto_tree_add_iten(foo_tree, hf_foo_initialip, tvb, offset, 4, ENC_BI G ENDI AN);
of fset += 4;

}

voi d
proto_regi ster_foo(void) {

{ &hf_foo_flags,
{ "FOO PDU Fl ags", "foo.flags",
FT_UI NT8, BASE_HEX,
NULL, 0xO,
NULL, HFILL }
H
{ &nhf_foo_sequenceno,
{ "FOO PDU Sequence Nunber", "foo.seqn",
FT_UI NT16, BASE_DEC,
NULL, 0xO,
NULL, HFILL }
H
{ &f _foo_initialip,
{ "FOO PDU Initial IP", "foo.initialip",
FT_I Pv4, BASE_NONE,
NULL, 0xO,
NULL, HFILL }

This dissects al the bits of this simple hypothetical protocol. We've introduced a new variable
offsetinto the mix to help keep track of where we are in the packet dissection. With these extra bits
in place, the whole protocol is now dissected.

Improving the dissection information

We can certainly improve the display of the protocol with a bit of extra data. The first step is to add
sometext labels. Let's start by labeling the packet types. There is some useful support for this sort of
thing by adding a couple of extrathings. First we add a simple table of type to name.

Example 9.9. Naming the packet types.

static const value_string packettypenanmes[] = {
{1, "Initialise" },
{ 2, "Termi nate" },
{ 3, "Data" },
{ 0, NULL }
H

Thisis a handy data structure that can be used to look up a name for a value. There are routines to
directly access this lookup table, but we don’'t need to do that, as the support code already has that
added in. Wejust have to give these details to the appropriate part of the data, using the VALS macro.

Example 9.10. Adding Namesto the protocol.

{ &hf_foo_pdu_type,
{ "FOO PDU Type", "foo.type",
FT_UI NT8, BASE_DEC,
VALS(packet t ypenanmes), O0xO,
NULL, HFILL }
}

This helps in deciphering the packets, and we can do a similar thing for the flags structure. For this
we need to add some more data to the table though.

59

Packet dissection

Example 9.11. Adding Flagsto the protocol.

#def i ne FOO_START_FLAG 0x01
#def i ne FOO_END_FLAG 0x02
#define FOO PRI ORI TY_FLAG 0x04

static int hf_foo_startflag = -1;
static int hf_foo_endflag = -1;
static int hf_foo_priorityflag = -1;

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
proto_tree_add_iten(foo_tree, hf_foo_flags, tvb, offset, 1, ENC Bl G END AN);
proto_tree_add_iten(foo_tree, hf_foo_startflag, tvb, offset, 1, ENC Bl G ENDI AN);
proto_tree_add_iten(foo_tree, hf_foo_endflag, tvb, offset, 1, ENC BI G ENDI AN);
proto_tree_add_iten(foo_tree, hf_foo_priorityflag, tvb, offset, 1, ENC Bl G END AN);
of fset += 1,

}

voi d

proto_regi ster_foo(void) {

{ &f_foo_startflag,
{ "FOO PDU Start Flags", "foo.flags.start",
FT_BOOLEAN, 8,
NULL, FOO START_FLAG
NULL, HFILL }

3
{ &hf_foo_endfl ag,
{ "FOO PDU End Fl ags", "foo.flags.end",
FT_BOOLEAN, 8,
NULL, FOO _END _FLAG
NULL, HFILL }

H
{ &f_foo_priorityflag,
{ "FOO PDU Priority Flags", "foo.flags.priority",
FT_BOOLEAN, 8,
NULL, FOO PRI ORI TY_FLAG
NULL, HFILL }

Some things to note here. For the flags, as each bit isa different flag, we use the type FT_BOCLEAN,
as the flag is either on or off. Second, we include the flag mask in the 7th field of the data, which
allows the system to mask the relevant bit. We've also changed the 5th field to 8, to indicate that we
are looking at an 8 bit quantity when the flags are extracted. Then finally we add the extra constructs
to the dissection routine. Note we keep the same offset for each of the flags.

Thisisstarting to look fairly full featured now, but there are acouple of other thingswe can do to make
thingslook even more pretty. At the moment our dissection showsthe packetsas"Foo Protocol" which
whilst correctisalittle uninformative. We can enhancethisby adding alittle moredetail . First, let’ sget
hold of the actual value of the protocol type. We can use the handy functiont vb_get _gui nt 8()
to do this. With this value in hand, there are a couple of things we can do. First we can set the INFO
column of the non-detailed view to show what sort of PDU it is - which is extremely helpful when
looking at protocol traces. Second, we can a so display thisinformation in the dissection window.

Example 9.12. Enhancing the display.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

60

Packet dissection

gui nt 8 packet _type = tvb_get_guint8(tvb, 0);

col _set _str(pinfo->cinfo, COL_PROTOCCOL, "FOO');
/* Clear out stuff in the info colum */
col _cl ear (pi nf o->ci nfo, COL_I NFO) ;
col _add_f str(pinfo->cinfo, COL_I NFO, "Type %",
val _to_str(packet_type, packettypenanes, "Unknown (O0x%92x)"));

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;
gint offset = O;

ti = proto_tree_add_item(tree, proto_foo, tvb, 0, -1, ENC_NA);
proto_item append_text(ti, ", Type %",
val _to_str(packet_type, packettypenanmes, "Unknown (O0x%©92x)"));
foo_tree = proto_item add_subtree(ti, ett_foo);
proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, offset, 1, ENC BI G ENDI AN);
of fset += 1;

}

So here, after grabbing the value of the first 8 bits, we use it with one of the built-in utility routines
val to_str(),tolookupthevalue. If thevalueisn't found we provide afallback which just prints
the value in hex. We use this twice, once in the INFO field of the columns—if it's displayed, and
similarly we append this data to the base of our dissecting tree.

9.3. How to handle transformed data

Some protocols do clever things with data. They might possibly encrypt the data, or compress data,
or part of it. If you know how these steps are taken it is possible to reverse them within the dissector.

As encryption can be tricky, let’'s consider the case of compression. These techniques can also work
for other transformations of data, where some step is required before the data can be examined.

What basically needs to happen here, isto identify the data that needs conversion, take that data and
transform it into a new stream, and then call adissector on it. Often this needsto be done "on-the-fly"
based on clues in the packet. Sometimes this needs to be used in conjunction with other techniques,
such as packet reassembly. The following shows a technique to achieve this effect.

Example 9.13. Decompressing data packets for dissection.

guint8 flags = tvb_get_guint8(tvb, offset);
of fset ++;
if (flags & FLAG COWRESSED) { /* the remi nder of the packet is conpressed */
guint16 orig_size = tvb_get_ntohs(tvb, offset);
guchar *deconpressed_buffer = (guchar*)g_malloc(orig_size);
of fset += 2;
deconpr ess_packet (tvb_get _ptr(tvb, offset, -1),
tvb_captured_| engt h_renui ni ng(tvb, offset),
deconpressed_buffer, orig_size);
/* Now re-setup the tvb buffer to have the new data */
next _tvb = tvb_new child_real _data(tvb, deconpressed_buffer, orig_size, orig_size);
tvb_set _free_cb(next _tvb, g_free);
add_new_dat a_source(pi nfo, next_tvb, "Deconpressed Data");
} else {
next _tvb = tvb_new subset_remaini ng(tvb, offset);

of fset = 0;
/* process next_tvb fromhere on */

The first steps here are to recognise the compression. In this case a flag byte aerts us to the fact the
remainder of the packet is compressed. Next we retrieve the original size of the packet, which in this
case is conveniently within the protocol. If it's not, it may be part of the compression routine to work
it out for you, in which case the logic would be different.

61

Packet dissection

So armed with the size, a buffer is allocated to receive the uncompressed datausingg_mal | oc(),
and the packet is decompressed into it. Thet vb_get ptr () function isuseful to get a pointer to
the raw data of the packet from the offset onwards. In this case the decompression routine also needs
to know the length, which isgiven by thet vb_capt ured_I engt h_r emai ni ng() function.

Next we build a new tvb buffer from this data, using thet vb_new chi l d_real _data() cal.
This data is a child of our origina data, so calling this function also acknowledges that. One
procedura step isto add a callback handler to free the data when it's no longer needed via a cal to
tvb_set free_cb().Inthiscaseg_mal | oc() wasusedtoallocatethememory,sog_free()

is the appropriate callback function. Finally we add this tvb as a new data source, so that the detailed
display can show the decompressed bytes as well asthe original.

After this has been set up the remainder of the dissector can dissect the buffer next_tvb, asit’'sanew
buffer the offset needs to be 0 as we start again from the beginning of this buffer. To make the rest of
the dissector work regardless of whether compression wasinvolved or not, in the casethat compression
was not signaled, weuset vb_new _subset renai ni ng() to deliver usanew buffer based on
the old one but starting at the current offset, and extending to the end. This makes dissecting the packet
from this point on exactly the same regardless of compression.

9.4. How to reassemble split packets

9.4.1.

Some protocols have timeswhen they haveto split alarge packet across multiple other packets. In this
case the dissection can’t be carried out correctly until you have al the data. The first packet doesn’t
have enough data, and the subsequent packets don’'t have the expect format. To dissect these packets
you need to wait until all the parts have arrived and then start the dissection.

How to reassemble split UDP packets

As an example, let's examine a protocol that is layered on top of UDP that splits up its own data
stream. If a packet is bigger than some given size, it will be split into chunks, and somehow signaled
within its protocol.

To deal with such streams, we need several things to trigger from. We need to know that this packet
is part of a multi-packet sequence. We need to know how many packets are in the sequence. We also
need to know when we have al the packets.

For this example we'll assume there is a simple in-protocol signaling mechanism to give details. A
flag byte that signals the presence of a multi-packet sequence and also the last packet, followed by an
ID of the sequence and a packet sequence number.

msg_pkt ::= SEQUENCE {
flags ::= SEQUENCE {
f ragment BOOLEAN,

| ast _fragment BOOLEAN,

msg_id | NTEGER(O. . 65535),
frag_id | NTEGER(O. . 65535),

Example 9.14. Reassembling fragments- Part 1
#i ncl ude <epan/reassenbl e. h>

save_fragnented = pinfo->fragnented;
flags = tvb_get_guint8(tvb, offset); offset++;
if (flags & FL_FRAGVENT) { /* fragmented */
tvbuff _t* new tvb = NULL;
fragment _data *frag_nsg = NULL;
guint16 nsg_seqid = tvb_get_ntohs(tvb, offset); offset += 2;

62

Packet dissection

guint16 nsg_num = tvb_get_ntohs(tvb, offset); offset += 2;

pi nf o- >fragnented = TRUE;
frag_msg = fragment _add_seq_check(tvb, offset, pinfo,
msg_seqid, /* ID for fragnents bel ongi ng together */
msg_fragment _table, /* list of nessage fragnents */
nmeg_reassenbl ed_table, /* list of reassenbl ed nmessages */
msg_num /* fragment sequence nunber */
tvb_captured_|l ength_remai ning(tvb, offset), /* fragment length - to the end */
flags & FL_FRAG LAST); /* Mre fragments? */

We start by saving the fragmented state of this packet, so we can restore it later. Next comes some
protocol specific stuff, to dig the fragment data out of the stream if it’'s present. Having decided it is
present, we let the function f r agnent _add_seq_check() doitswork. We need to provide this
with a certain amount of data.

e Thetvb buffer we are dissecting.
» The offset where the partial packet starts.
* The provided packet info.

» The sequence number of the fragment stream. There may be several streams of fragmentsin flight,
and thisis used to key the relevant one to be used for reassembly.

» Thenmsg_fragment _tabl e and the nsg_r eassenbl ed_t abl e are variables we need to
declare. We'll consider thesein detail later.

* msg_num isthe packet number within the sequence.
» Thelength hereis specified as the rest of the tvb as we want the rest of the packet data.

» Finally a parameter that signals if thisis the last fragment or not. This might be a flag as in this
case, or there may be a counter in the protocol.

Example 9.15. Reassembling fragments part 2

new_tvb = process_reassenbl ed_data(tvb, offset, pinfo,
"Reassenbl ed Message", frag_nsg, &nsg_frag_itens,
NULL, nsg_tree);

if (frag_msg) { /* Reassenbled */
col _append_str (pi nfo->cinfo, COL_I NFQ
" (Message Reassenbled)");
} else { /* Not |ast packet of reassenbled Short Message */
col _append_fstr(pinfo->cinfo, COL_I NFO
" (Message fragnent %)", nmsg_num;

}

if (newtvb) { /* take it all */
next _tvb = new_tvb;
} else { /* make a new subset */
next _tvb = tvb_new subset(tvb, offset, -1, -1);

}

else { /* Not fragmented */
next _tvb = tvb_new subset(tvb, offset, -1, -1);

pi nf o- >fragnented = save_fragnent ed;

Having passed the fragment data to the reassembly handler, we can now check if we have the whole
message. |f there is enough information, this routine will return the newly reassembled data buffer.

After that, we add acouple of informative messagesto thedisplay to show that thisispart of asequence.
Then ahit of manipulation of the buffers and the dissection can proceed. Normally you will probably

63

Packet dissection

not bother dissecting further unless the fragments have been reassembled as there won't be much to
find. Sometimes the first packet in the sequence can be partially decoded though if you wish.

Now the mysterious data we passed into the f r agnent _add_seq_check() .

Example 9.16. Reassembling fragments - I nitialisation

static CHashTabl e *nmsg_fragment _table = NULL;
static CHashTabl e *nmsg_reassenbl ed_t abl e = NULL;

static void
msg_i ni t_protocol (voi d)
{
fragment _tabl e_i nit(&sg_fragment_table);
reassenbl ed_tabl e_i nit (&sg_r eassenbl ed_t abl e) ;
}

First acouple of hash tables are declared, and these are initialised in the protocol initialisation routine.
Following that, af r agnment _i t enrs structureis alocated and filled in with a series of ett items, hf
dataitems, and a string tag. The ett and hf values should be included in the relevant tableslike all the
other variables your protocol may use. The hf variables need to be placed in the structure something
like the following. Of course the names may need to be adjusted.

Example 9.17. Reassembling fragments - Data

stati

c int hf_nsg_fragnents = -1;
static int hf_msg_fragnent = -1,
static int hf_nsg_fragnent_overlap = -1;
static int hf_nsg_fragnent_overlap_conflicts = -1;
static int hf_msg_fragnent_nultiple_tails = -1;
static int hf_msg_fragnent_too_l ong_fragment = -1;
static int hf_nsg_fragnent_error = -1;
static int hf_nsg_fragnent_count = -1;
static int hf_nsg_reassenbled_in = -1,
static int hf_nsg_reassenbl ed_| ength = -1;
static gint ett_nsg_fragment = -1;
static gint ett_nsg_fragments = -1;

static const fragnment_itenms nsg_frag_items = {
/* Fragnent subtrees */
&ett _msg_fragment,
&ett _msg_fragnents,
/* Fragnent fields */
&hf _msg_fragments,
&hf _msg_fragment,
&hf _msg_f ragment _overl ap,
&hf _msg_fragment _overlap_conflicts,
&hf _msg_fragment _multiple_tails,
&hf _msg_fragment _too_I| ong_fragment,
&hf _msg_fragment _error,
&hf _msg_f ragment _count,
/* Reassenbled in field */
&hf _msg_reassenbl ed_i n,
/* Reassenbled length field */
&hf _msg_reassenbl ed_| engt h,
/* Tag */
"Message fragments”

3

static hf _register_info hf[] =

{

{&hf _msg_fragnents,

{"Message fragnents", "nsg.fragments",

FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } },
{&hf _msg_fragment,

{"Message fragnent", "nsg.fragnment"”,

64

Packet dissection

9.4.2.

FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } }
{&hf _msg_fragment _overl ap
{"Message fragnent overlap", "mnsg.fragment.overlap"
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } }
{&hf _msg_fragment _overlap_conflicts
{"Message fragnent overlapping with conflicting data"
"msg. fragnent. overl ap. conflicts",
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } }
{&hf _msg_fragment _nultiple_tails
{"Message has multiple tail fragments",
"msg.fragnent.multiple_tails",
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } }
{&hf _nmsg_fragment _too_I| ong_fragnent,
{"Message fragnent too |ong", "nsg.fragment.too_|l ong_fragment"
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } }
&hf _msg_fragment _error
_msg_rrag _
{"Message defragnentation error", "nsg.fragment.error"”,
FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } }
&hf _msg_fragment _count,
{ _msg_rrag _
{"Message fragnent count", "nsg.fragnent.count"
FT_UI NT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }
{&hf _nmsg_reassenbl ed_i n,
{"Reassenbl ed in", "msg.reassenbl ed.in"
FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } }
{&hf _nmsg_reassenbl ed_| ength
{"Reassenbl ed | ength", "nsg.reassenbl ed. | ength”
FT_UI NT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }

static gint *ett[] =
{

&ett _msg_fragment
&ett_msg_fragments

These hf variables are used internally within the reassembly routines to make useful links, and to add
data to the dissection. It produces links from one packet to another, such as a partial packet having a
link to the fully reassembled packet. Likewise there are back pointers to the individual packets from
the reassembled one. The other variables are used for flagging up errors.

How to reassemble split TCP Packets

A dissector getsat vbuf f _t pointer which holdsthe payload of a TCP packet. This payload contains
the header and data of your application layer protocol.

When dissecting an application layer protocol you cannot assume that each TCP packet contains
exactly one application layer message. One application layer message can be split into several TCP
packets.

You also cannot assume that a TCP packet contains only one application layer message and that the
message header is at the start of your TCP payload. More than one messages can be transmitted in one
TCP packet, so that a message can start at an arbitrary position.

This sounds complicated, but there is a simple solution. t cp_di ssect _pdus() does all thistcp
packet reassembling for you. This function isimplemented in epan/dissector s/packet-tcp.h.
Example 9.18. Reassembling TCP fragments

#i ncl ude "config.h"

#i ncl ude <epan/ packet. h>

#i ncl ude <epan/ prefs. h>
#i ncl ude "packet-tcp.h"

#defi ne FRAME_HEADER LEN 8

65

Packet dissection

/* This method dissects fully reassenbl ed nmessages */
static int
di ssect _f oo_nessage(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U)

/* TODO. inplenent your dissecting code */
return tvb_captured_| ength(tvb);

}

/* determine PDU | ength of protocol foo */
static guint
get _foo_nessage_| en(packet_info *pinfo _U, tvbuff_t *tvb, int offset, void *data _U)

{
/* TODO. change this to your needs */
return (guint)tvb_get_ntohl (tvb, offset+4); /* e.g. length is at offset 4 */
}
/* The main dissecting routine */
static int
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{

tcp_di ssect _pdus(tvb, pinfo, tree, TRUE, FRAME_HEADER LEN,
get _foo_nessage_| en, dissect_foo_nessage, data);
return tvb_captured_| ength(tvb);

As you can see this is redly smple. Just call t cp_di ssect _pdus() in your main dissection
routine and move you message parsing code into another function. This function gets called whenever
amessage has been reassembl ed.

The parameters tvb, pinfo, tree and data are just handed over tot cp_di ssect _pdus() . The 4th
parameter is aflag to indicate if the data should be reassembled or not. This could be set according
to adissector preference as well. Parameter 5 indicates how much data has at least to be available to
be able to determine the length of the foo message. Parameter 6 is a function pointer to a method that
returns this length. It gets called when at least the number of bytes given in the previous parameter
isavailable. Parameter 7 is afunction pointer to your real message dissector. Parameter 8 is the data
passed in from parent dissector.

Protocols which need more data before the message length can be determined can return zero. Other
values smaller than the fixed length will result in an exception.

9.5. How to tap protocols

Adding a Tap interface to a protocol alowsit to do some useful things. In particular you can produce
protocol statistics from the tap interface.

A tapisbasically away of allowing other itemsto see what’ s happening as a protocol is dissected. A
tap is registered with the main program, and then called on each dissection. Some arbitrary protocol
specific datais provided with the routine that can be used.

To create atap, youfirst need to register atap. A tap isregistered with an integer handle, and registered
with theroutiner egi st er _t ap() . Thistakes a string name with which to find it again.
Example 9.19. Initialising a tap

#i ncl ude <epan/ packet. h>
#i ncl ude <epan/tap. h>

static int foo_tap = -1,
struct FooTap {

gi nt packet _type;
gint priority;

66

Packet dissection

H
voi d proto_register_foo(void)

{

foo_tap = register_tap("foo");

Whilst you can program atap without protocol specific data, it is generally not very useful. Therefore
it's a good idea to declare a structure that can be passed through the tap. This needs to be a static
structure asit will be used after the dissection routine has returned. It’ s generally best to pick out some
generic parts of the protocol you are dissecting into the tap data. A packet type, a priority or a status
code maybe. The structure really needs to be included in a header file so that it can be included by
other components that want to listen in to the tap.

Once you have these defined, it's simply a case of populating the protocol specific structure and then
calingt ap_queue_packet , probably asthe last part of the dissector.

Example 9.20. Calling a protocol tap

voi d dissect_foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
fooi nfo = wrem al | oc(wrem packet _scope(), sizeof(struct FooTap));
f ooi nf o- >packet _type = tvb_get _guint8(tvb, 0);
fooinfo->priority = tvb_get_ntohs(tvb, 8);
t ap_queue_packet (foo_tap, pinfo, fooinfo);
}

This now enables those interested parties to listen in on the details of this protocol conversation.

9.6. How to produce protocol stats

Given that you have a tap interface for the protocol, you can use this to produce some interesting
statistics (well presumably interesting!) from protocol traces.

This can be done in a separate plugin, or in the same plugin that is doing the dissection. The latter
scheme is better, as the tap and stats module typically rely on sharing protocol specific data, which
might get out of step between two different plugins.

Here is a mechanism to produce statistics from the above TAP interface.

Example 9.21. Initialising a stats interface

/* register all http trees */
static void register_foo_stat_trees(void) {
stats_tree_register("foo", "foo", "Fool/Packet Types",
foo_stats_tree_packet, foo_stats_tree_init, NULL);

}

W5 DLL_PUBLI C_DEF const gchar version[] = "0.0";
WS_DLL_PUBLI C_DEF void plugin_register_tap_|istener(void)
{ regi ster_foo_stat_trees();

}

#endi f

Working from the bottom up, first the plugin interfface entry point is defined,
pl ugi n_register_tap_listener(). This smply cals the initialisation function
regi ster _foo _stat _trees().

Thisinturn callsthe stats_tree_regi ster () function, which takes three strings, and three
functions.

67

Packet dissection

1. Thisisthetap namethat is registered.

2. An abbreviation of the stats name.

3. The name of the stats module. A '/ character can be used to make sub menus.
4. Thefunction that will called to generate the stats.

5. A function that can be called to initialise the stats data

6. A function that will be called to clean up the stats data.

In this case we only need the first two functions, as there is nothing specific to clean up.

Example 9.22. I nitialising a stats session

static const guint8* st_str_packets = "Total Packets";

static const guint8* st_str_packet_types = "FOO Packet Types";
static int st_node_packets = -1;

static int st_node_packet_types = -1;

static void foo_stats_tree_init(stats_tree* st)

{

st _node_packets = stats_tree_create_node(st, st_str_packets, 0, TRUE);
st _node_packet _types = stats_tree_create_pivot(st, st_str_packet_types, st_node_packets);

}

In this case we create a new tree node, to handle the total packets, and as a child of that we create a
pivot table to handle the stats about different packet types.

Example 9.23. Generating the stats

static int foo_stats_tree_packet(stats_tree* st, packet_info* pinfo, epan_dissect_t* edt, const voi

{
struct FooTap *pi = (struct FooTap *)p;
tick_stat_node(st, st_str_packets, 0, FALSE);
stats_tree_tick_pivot(st, st_node_packet_types,
val _to_str(pi->packet _type, nsgtypeval ues, "Unknown packet type (%)"));
return 1;

}

In this case the processing of the stats is quite ssimple. First we call theti ck_st at _node for the
st _str_packet s packet node, to count packets. Thenacaltostats_tree_tick_pivot ()
onthest _node_packet _t ypes subtree alows usto record statistics by packet type.

9.7. How to use conversations

Some info about how to use conversations in a dissector can be found in the file doc/
README.dissector, chapter 2.2.

9.8. idl2wrs: Creating dissectors from
CORBA IDL files

Many of Wireshark’s dissectors are automatically generated. This section shows how to generate one
fromaCORBA IDL file.

9.8.1. What is it?

Asyou have probably guessed fromthe name, i dl 2wr s takesauser specified IDL file and attempts
to build a dissector that can decode the IDL traffic over GIOP. The resulting fileis “C” code, that
should compile okay as a Wireshark dissector.

68

Packet dissection

9.8.2.

9.8.3.

i dl 2wr s parses the data struct given to it by the ommi i dl compiler, and using the GIOP API
available in packet-giop.[ch], generatesget CDR_xxx callsto decode the CORBA traffic onthewire.

It consists of 4 main files.

README.idI2wrs This document

wireshark _be.py The main compiler backend

wireshark_gen.py A helper class, that generates the C code.

idl2wrs A simple shell script wrapper that the end user should use to generate

the dissector from the IDL file(s).
Why do this?

It isimportant to understand what CORBA traffic looks like over GIOP/I1OP, and to help build atool
that can assist in troubleshooting CORBA interworking. This was especially the case after seeing a
lot of discussions about how particular IDL types are represented inside an octet stream.

| have also had comments/feedback that thistool would be good for say aCORBA class when teaching
students what CORBA traffic looks like “on the wire”.

It isalso COOL to work on a great Open Source project such as the case with “Wireshark” (https.//
www.wireshark.org/)

How to use idl2wrs

To usethe idl2wrs to generate Wireshark dissectors, you need the following:
» Python must be installed. See http://python.org/

» ommi i dl from the omniORB package must be available. See http://omniorb.sourceforge.net/

» Of course you need Wireshark installed to compile the code and tweak it if required. idl2wrsis part
of the standard Wireshark distribution

To useidl2wrs to generate an Wireshark dissector from an idl file use the following procedure:
» Towrite the C code to stdout.

$ idl2ws <your_file.idl>

eg.

$ idl2ws echo.idl

» Towriteto afile, just redirect the output.

$ idl 2ws echo.idl > packet-test-idl.c

Y ou may wish to comment out the register_giop_user_module() code and that will leave you with
heuristic dissection.

If you don’t want to use the shell script wrapper, then try steps 3 or 4 instead.

» To write the C code to stdout.

$ omiidl -p ./ -b wireshark_be <your file.idl>

eg.

$ omiidl -p ./ -b wireshark_be echo.idl

69

wireshark-web-site:[]
wireshark-web-site:[]
http://python.org/
http://omniorb.sourceforge.net/

Packet dissection

9.8.4.

9.8.5.

9.8.6.

e Towriteto afile, just redirect the output.

$ omiidl -p ./ -b wireshark_be echo.idl > packet-test-idl.c

Y ou may wish to comment out the register_giop_user_module() code and that will leave you with
heuristic dissection.

» Copy theresulting C code to subdirectory epan/dissectors/ inside your Wireshark source directory.

$ cp packet-test-idl.c /dir/where/w reshark/lives/epan/dissectors/

The new dissector has to be added to Makefile.common in the same directory. Look for the
declaration CLEAN_DISSECTOR_SRC and add the new dissector there. For example,

CLEAN_DI SSECTOR _SRC =\
packet - 2dparityfec.c \
packet - 3com nj ack. c \

becomes

CLEAN_DI SSECTOR _SRC =\
packet-test-idl.c \
packet - 2dparityfec.c \
packet - 3com nj ack. c \

For the next steps, go up to the top of your Wireshark source directory.

* Run configure

$./configure (or ./autogen.sh)

» Compile the code

$ nmake

* Good Luck !!

TODO

» Exception code not generated (yet), but can be added manually.
» Enums not converted to symbolic values (yet), but can be added manually.
» Add command line options etc

e Morel amsure:-)

Limitations

See the TODO list inside packet-giop.c

Notes

The-p ./ option passed to omniidl indicates that the wireshark_be.py and wireshark_gen.py are
residing in the current directory. This may need tweaking if you place these files somewhere el se.

If it complains about being unable to find some modules (e.g. tempfile.py), you may want to check if
PYTHONPATH is set correctly. On my Linux box, it is PY THONPATH=/usr/lib/python2.4/

70

Chapter 10. Lua Support in Wireshark
10.1. Introduction

Wireshark has an embedded Lua interpreter. Lua is a powerful light-weight programming language
designed for extending applications. Lua is designed and implemented by a team at PUC-Rio, the
Pontifical Catholic University of Rio de Janeiro in Brazil. Lua was born and raised at Tecgraf, the
Computer Graphics Technology Group of PUC-RIo, and is now housed at Lua.org. Both Tecgraf and
Lua.org are laboratories of the Department of Computer Science.

In Wireshark Lua can be used to write dissectors, taps, and capture file readers and writers.

Wireshark’s Lua interpreter starts by loading i ni t . | ua that is located in the global configuration
directory of Wireshark. Luaisenabled by default. To disable Luathe line variable disable |ua should
besettotrueini nit. | ua.

After loading init.lua from the data directory if Luais enabled Wireshark will try to load afile named
i ni t.!| uaintheusersdirectory.

Wireshark will also load al files with . | ua suffix from both the global and the personal plugins
directory.

The command line option -X lua_script:fi | e. | ua can be used to load L ua scripts as well.

The Lua code will be executed once after al the protocol dissectors have being initialized and before
reading any file.

10.2. Example of Dissector written in Lua

local p_multi = Proto("nulti","MiltiProto");

local vs_protos = {

[2] = "ntp2",
[3] = "ntp3”,

[4] "al cap",
[5] "h248",
[6] "ranap"”,
[7] "rnsap",
[8] " nbap"

}

local f_proto = ProtoField.uint8("multi.protocol","Protocol", base. DEC, vs_pr ot 0S)
local f_dir = ProtoField.uint8("multi.direction","Direction", base.DEC { [1] = "incoming", [0] = "ou
local f_text = ProtoField.string("multi.text","Text")

p_multi.fields = { f_proto, f_dir, f_text }
| ocal data_dis = Dissector.get("data")

local protos = {
[2] Di ssector. get("ntp2"),
[3] Di ssector. get (" ntp3"),
[4] Di ssector. get("al cap"),
[5] Di ssector. get ("h248"),
[6] Di ssector. get("ranap"),
[7] Di ssector.get("rnsap"),
[8] Di ssect or. get (" nbap"),
[9] Di ssector.get("rrc"),
[10] Di ssector Tabl e. get ("sctp. ppi ") :get_dissector(3), -- nBua
[11] Di ssector Tabl e. get ("i p. proto"): get_di ssector(132), -- sctp

}

function p_multi.dissector(buf, pkt, root)

71

http://www.lua.org

Lua Support in Wireshark

10.3

end

| ocal
| ocal

local t = root:add(p_rulti,buf(0,2))
t:add(f_proto, buf(0, 1))
t:add(f_dir, buf(1,1))

local proto_id = buf(0,1):uint()

| ocal dissector = protos[proto_id]

if dissector ~= ni
di ssector:call (buf(2):tvb(), pkt,root)
elseif proto_id < 2 then
t:add(f_text, buf(2))

-- pkt.cols.info:set(buf (2, buf:len()

el se

t hen

data_dis:call (buf(2):tvb(), pkt, root)

end

- 3):string())

wt ap_encap_t abl e = Di ssector Tabl e. get ("wt ap_encap")
udp_encap_t abl e = Di ssector Tabl e. get ("udp. port")

wt ap_encap_t abl e: add(wt ap. USER15, p_mnul ti)
wt ap_encap_t abl e: add(wt ap. USER12, p_mul ti)
udp_encap_t abl e: add(7555, p_rul ti)

Example of Listener written in Lua

-- This programwi ||

register a nenu that wll

-- of every address in the capture

| ocal

function menuabl e_tap()
-- Declare the window we will use
local tw = Text Wndow. new(" Address Counter")

open a wi ndow with a count of occurrences

-- This will contain a hash of counters of appearances of a certain address

local ips = {}

-- this is our tap

local tap = Listener.new();

function renove()

-- this way we renove the |istener that otherw se wll

tap: renove()

end

-- we tell the windowto call

tw set _atcl ose(renove)

-- this function will

function tap. packet (pinfo,tvb)

| ocal src
| ocal dst
ips[tostri

ips[tostri
end

-- this function will
function tap.drawmt)

ng(pinfo.src)] =s
ng(pinfo.dst)] = ds

i ps[tostring(pinfo.src)] or
i ps[tostring(pinfo.dst)] or
rc +1

t +1

tw clear()
for ip,numin pairs(ips) do
tw append(ip .. "\t" .. num..
end
end
-- this function will be called whenever a reset

-- e.g. when reloading the capture file

function tap.reset()

tw clear()

the renove() function when cl osed

be called once for each packet

0
0

"\n");

is needed

remain running indefinitely

be called once every few seconds to update our w ndow

72

Lua Support in Wireshark

ips = {}
end
end

-- using this function we register our function
-- to be called when the user selects the Tool s->Test->Packets menu
regi ster_menu(" Test/ Packets", nenuabl e_tap, MENU_TOOLS_UNSORTED)

73

Chapter 11. Wireshark’s Lua API
Reference Manual

This Part of the User Guide describes the Wireshark specific functions in the embedded Lua.

11.1. Saving capture files

The classes/functions defined in this module are for using a Dunper object to make Wireshark
save a capture file to disk. Dunper represents Wireshark’s built-in file format writers (see the
wtap_filetypestableininit.| ua).

Tohavealuascript createitsown fileformat writer, seethe chapter titled " Custom fileformat reading/
writing".

11.1.1. Dumper
11.1.1.1. Dumper.new(filename, [filetype], [encap])

Creates afile to write packets. Dunper : new_f or _current () will probably be a better choice.

Arguments
filename The name of the capture file to be created.
filetype (optional) The type of the file to be created - a number entry from the
wtap_filetypestableininit. |l ua.
encap (optional) The encapsulation to be used in the file to be created - a number
entry from thewt ap_encaps tableini nit. | ua.
Returns

The newly created Dumper object
11.1.1.2. dumper:close()
Closes adumper.

Errors

» Cannot operate on a closed dumper

11.1.1.3. dumper:flush()

Writes all unsaved data of a dumper to the disk.

11.1.1.4. dumper:dump(timestamp, pseudoheader, bytearray)

Dumps an arbitrary packet.

Note

Dumper:dump_current() will fit best in most cases.

74

Wireshark’s Lua API

Reference Manual
Arguments
timestamp The absolute timestamp the packet will have.
pseudoheader The PseudoHeader to use.
bytearray The datato be saved

11.1.1.5. dumper:new_for_current([filetype])
Creates a capture file using the same encapsul ation as the one of the current packet.
Arguments
filetype (optional) Thefile type. Defaults to pcap.
Returns
The newly created Dumper Object
Errors
 Cannot be used outside atap or a dissector
11.1.1.6. dumper:dump_current()
Dumps the current packet asit is.
Errors

 Cannot be used outside atap or a dissector

11.1.2. PseudoHeader

A pseudoheader to be used to save captured frames.

11.1.2.1. PseudoHeader.none()
Createsa'"no" pseudoheader.
Returns

A null pseudoheader

11.1.2.2. PseudoHeader.eth([fcslen])

Creates an ethernet pseudoheader.
Arguments

fcden (optional) Thefcslength
Returns

The ethernet pseudoheader

11.1.2.3. PseudoHeader.atm([aal], [vpi], [vci], [channel], [cells],
[aal5u2u], [aal5len])

Creates an ATM pseudoheader.

75

Wireshark’s Lua API

Reference Manual

Arguments

aal (optional) AAL number

vpi (optional) VPI

vci (optional) VCI

channel (optional) Channel

cells (optional) Number of cellsin the PDU

aal5u2u (optional) AALS5 User to User indicator

aalSlen (optional) AALS5Len
Returns

The ATM pseudoheader

11.1.2.4. PseudoHeader.mtp2([sent], [annexa], [linknum])

Creates an MTP2 PseudoHeader.

Arguments
sent (optional) Trueif the packet is sent, Falseif received.
annexa (optional) Trueif annex A is used.
linknum (optional) Link Number.
Returns
The MTP2 pseudoheader
11.2. Obtaining dissection data
11.2.1. Field

A Field extractor toto obtainfield values. A Fi el d object can only be created outside of the callback
functions of dissectors, post-dissectors, heuristic-dissectors, and taps.

Once created, it is used inside the callback functions, to generate aFi el dl nf o object.

11.2.1.1. Field.new(fieldname)

Create a Field extractor.
Arguments

fieldname Thefilter name of the field (e.g. ip.addr)
Returns

The field extractor
Errors

» A Field extractor must be defined before Taps or Dissectors get called

76

Wireshark’s Lua API
Reference Manud

11.2.1.2. Field.list()

GetsaLuaarray table of al registered field filter names.

Note
thisis an expensive operation, and should only be used for troubleshooting.
Since: 1.11.3
Returns

The array table of field filter names

11.2.1.3. field:_call()

Obtain all values (see Fi el dI nf o) for thisfield.
Returns

All the values of thisfield
Errors

* Fields cannot be used outside dissectors or taps

11.2.1.4. field:__tostring()

Obtain a string with the field filter name.

11.2.1.5. field.name

Mode: Retrieve only.
Thefilter name of thisfield, or nil.

Since: 1.99.8

11.2.1.6. field.display
Mode: Retrieve only.
The full display name of thisfield, or nil.

Since: 1.99.8

11.2.1.7. field.type
Mode: Retrieve only.
Thef t ype of thisfield, or nil.

Since: 1.99.8

11.2.2. FieldInfo

An extracted Field from dissected packet data. A Fi el dI nf o object can only be used within the
callback functions of dissectors, post-dissectors, heuristic-dissectors, and taps.

77

Wireshark’s Lua API
Reference Manud

A Fi el dlI nf o can be called on either existing Wireshark fields by using either Fi el d. new() or
Fi el d() before-hand, or it can be called on new fields created by Luafrom aPr ot oFi el d.

11.2.2.1. fieldinfo:_len()

Obtain the Length of the field

11.2.2.2. fieldinfo:_unm()

Obtain the Offset of the field

11.2.2.3. fieldinfo:_call()

Obtain the Value of thefield.

Previous to 1.11.4, this function retrieved the value for most field types, but for
ftypes. U NT_BYTES it retrieved the Byt eArray of the field's entire TvbRange. In other
words, it returned a Byt eAr r ay that included the leading length byte(s), instead of just the value
bytes. That was a bug, and has been changed in 1.11.4. Furthermore, it retrieved anf t ypes. GUI D
asaByt eAr r ay, which isalso incorrect.

If you wish to still get aByt eAr r ay of the TvbRange, use Fi el dl nf 0: get _range() toget
the TvbRange, and then use Tvb: byt es() toconvertittoaByt eArray.

11.2.2.4. fieldinfo:__tostring()

The string representation of the field.

11.2.2.5. fieldinfo:__eq()

Checks whether Ihsiswithin rhs.

11.2.2.6. fieldinfo:__le()
Checks whether the end byte of lhsis before the end of rhs.
Errors

» Data source must be the same for both fields

11.2.2.7. fieldinfo:__It()

Checks whether the end byte of rhsis before the beginning of rhs.
Errors

» Data source must be the same for both fields
11.2.2.8. fieldinfo.len

Mode: Retrieve only.

The length of thisfield.

11.2.2.9. fieldinfo.offset

Mode: Retrieve only.

78

Wireshark’s Lua API
Reference Manud

The offset of thisfield.

11.2.2.10. fieldinfo.value
Mode: Retrieve only.

The value of thisfield.

11.2.2.11. fieldinfo.label

Mode: Retrieve only.

The string representing this field.

11.2.2.12. fieldinfo.display

Mode: Retrieve only.

The string display of thisfield as seenin GUI.

11.2.2.13. fieldinfo.type

Mode: Retrieve only.
The interna field type, a number which matches one of thef t ype valuesini ni t. | ua.

Since: 1.99.8

11.2.2.14. fieldinfo.source

Mode: Retrieve only.
The source Tvb object the Fi el dI nf o isderived from, or nil if there is none.

Since: 1.99.8

11.2.2.15. fieldinfo.range

Mode: Retrieve only.

The TvbRange covering thisfield.

11.2.2.16. fieldinfo.generated

Mode: Retrieve only.

Whether this field was marked as generated (boolean).

11.2.2.17. fieldinfo.hidden

Mode: Retrieve only.
Whether this field was marked as hidden (boolean).

Since: 1.99.8

11.2.2.18. fieldinfo.is_url

Mode: Retrieve only.

79

Wireshark’s Lua API
Reference Manud

Whether this field was marked as being a URL (boolean).

Since: 1.99.8

11.2.2.19. fieldinfo.little_endian

Mode: Retrieve only.
Whether thisfield islittle-endian encoded (boolean).

Since: 1.99.8

11.2.2.20. fieldinfo.big_endian

Mode: Retrieve only.
Whether this field is big-endian encoded (boolean).

Since: 1.99.8

11.2.2.21. fieldinfo.name

Mode: Retrieve only.
The filter name of thisfield.

Since: 1.99.8

11.2.3. Global Functions
11.2.3.1. all_field _infos()

Obtain all fields from the current tree. Note this only gets whatever fields the underlying dissectors
have filled in for this packet at this time - there may be fields applicable to the packet that simply
aren’t being filled in because at thistimethey’ re not needed for anything. Thisfunction only gets what
the C-side code has currently populated, not the full list.

Errors

» Cannot be called outside a listener or dissector

11.3. GUI support
11.3.1. ProgDlg

Manages a progress bar dialog.
11.3.1.1. ProgDlg.new([title], [task])

Createsanew Pr ogDl g progress dialog.

Arguments
title (optional) Title of the new window, defaultsto "Progress’.
task (optional) Current task, defaultsto "".

80

Wireshark’s Lua API
Reference Manud

Returns

The newly created Pr ogDl g object.

11.3.1.2. progdlg:update(progress, [task])

Appends text.
Arguments
progress Part done (e.g. 0.75).
task (optional) Current task, defaultsto "".

Errors

* GUI not available

 Cannot be called for something not a ProgDlg

 Progress vaue out of range (must be between 0.0 and 1.0)
11.3.1.3. progdlg:stopped()

Checks whether the user has pressed the stop button.
Returns

trueif the user has asked to stop the progress.

11.3.1.4. progdlg:close()

Closes the progress dialog.
Returns

A string specifying whether the Progress Dialog has stopped or not.
Errors

e GUI not available

11.3.2. TextWindow

Manages a text window.

11.3.2.1. TextWindow.new(]title])

Creates anew Text W ndow text window.
Arguments

title (optional) Title of the new window.
Returns

The newly created Text W ndow object.

81

Wireshark’s Lua API
Reference Manud

Errors
* GUI not available
11.3.2.2. textwindow:set_atclose(action)
Set the function that will be called when the text window closes.
Arguments
action A Luafunction to be executed when the user closes the text window.
Returns
The Text W ndow object.
Errors

* GUI not available

11.3.2.3. textwindow:set(text)

Sets the text.
Arguments

text The text to be used.
Returns

The Text W ndow object.
Errors

e GUI not available

11.3.2.4. textwindow:append(text)

Appends text
Arguments

text The text to be appended
Returns

The Text W ndow object.
Errors

* GUI not available

11.3.2.5. textwindow:prepend(text)

Prepends text
Arguments
text The text to be appended

82

Wireshark’s Lua API
Reference Manud

Returns
The Text W ndow object.
Errors

* GUI not available

11.3.2.6. textwindow:clear()
Erases all text in the window.
Returns
The TextWindow object.
Errors
* GUI not available
11.3.2.7. textwindow:get_text()
Get the text of the window
Returns
The "TextWindow’ s text.
Errors
* GUI not available
11.3.2.8. textwindow:close()
Close the window
Errors

* GUI not available

11.3.2.9. textwindow:set_editable([editable])
Make this text window editable.
Arguments
editable (optional) A boolean flag, defaultsto true.
Returns
The Text W ndow object.
Errors

e GUI not available

11.3.2.10. textwindow:add _button(label, function)

Adds a button to the text window.

83

Wireshark’s Lua API
Reference Manud

Arguments
label

function

Returns

The Text W ndow object.

Errors

¢ GUI not available

The label of the button

The Luafunction to be called when clicked

11.3.3. Global Functions

11.3.3.1. gui_enabled()

Checks whether the GUI facility is enabled.

Returns

A boolean: true if it is enabled, falseif itisn't.

11.3.3.2. register_menu(name, action, [group])

Register amenu item in one of the main menus.

Arguments

name

action

group (optional)

The name of the menu item. The submenus are to be separated by "/'s.
(string)

The function to be called when the menu item is invoked. (function
taking no arguments and returning nothing)

The menu group into which the menu item is to be inserted. If omitted,
defaultsto MENU_STAT_GENERIC. One of:

« MENU_STAT UNSORTED (Statistics),

« MENU_STAT GENERIC (Statistics, first section),

« MENU_STAT_CONVERSATION (Statistics/Conversation List),
« MENU_STAT_ENDPOINT (StatisticsEndpoint List),

« MENU_STAT_RESPONSE (Statistics/Service Response Time),
« MENU_STAT TELEPHONY (Telephony),

« MENU_STAT_TELEPHONY_GSM (Telephony/GSM),

« MENU_STAT_TELEPHONY _LTE (Telephony/LTE),

« MENU_STAT TELEPHONY_SCTP (Telephony/SCTP),

« MENU_ANALYZE (Andyze),

« MENU_ANALYZE _CONVERSATION (Analyze/Conversation
Filter),

Wireshark’s Lua API
Reference Manud

« MENU_TOOLS _UNSORTED (Tools). (number)

11.3.3.3. new_dialog(title, action, ...)

Pops up anew dialog
Arguments
title Title of the dialog’ s window.
action Action to be performed when OK’d.

A series of strings to be used as labels of the dialog’ sfields.
Errors
* GUI not available
» Atleast onefield required
 All fields must be strings

11.3.3.4. retap_packets()

Rescan all packets and just run taps - don’t reconstruct the display.
11.3.3.5. copy_to_clipboard(text)

Copy astring into the clipboard.
Arguments

text The string to be copied into the clipboard.
11.3.3.6. open_capture_file(filename, filter)

Open and display a capturefile.

Arguments
filename The name of the file to be opened.
filter A filter to be applied as the file gets opened.

11.3.3.7. get_filter()
Get the main filter text.
11.3.3.8. set_filter(text)
Set the main filter text.
Arguments
text Thefilter’ stext.
11.3.3.9. set_color_filter_slot(row, text)

Set packet-coloring rule for the current session.

85

Wireshark’s Lua API

Reference Manual
Arguments
row Theindex of the desired color in the temporary coloring ruleslist.
text Display filter for selecting packetsto be colorized.

11.3.3.10. apply_filter()
Apply thefilter in the main filter box.
11.3.3.11. reload()
Reload the current capture file.
11.3.3.12. browser_open_url(url)
Open an url in abrowser.
Arguments
url The url.
11.3.3.13. browser_open_data_file(filename)
Open afilein abrowser.

Arguments

filename The file name.

11.4. Post-dissection packet analysis
11.4.1. Listener

A Li st ener iscalled once for every packet that matches a certain filter or has a certain tap. It can
read the tree, the packet’s Tvb buffer aswell asthe tapped data, but it cannot add elementsto the tree.

11.4.1.1. Listener.new([tap], [filter], [allfields])

Createsanew Li st ener listener object.

Arguments
tap (optional) The name of this tap.
filter (optional) A filter that when matchesthet ap. packet function getscalled
(use nil to be called for every packet).
allfields (optional) Whether to generate all fields. (default=false)
Note
this impacts performance.
Returns

The newly created Listener listener object

86

Wireshark’s Lua API
Reference Manud

Errors
* tapregistration error
11.4.1.2. Listener.list()

GetsalLuaarray table of all registered Li st ener tap names.

Note
thisis an expensive operation, and should only be used for troubleshooting.
Since: 1.11.3
Returns

The array table of registered tap names

11.4.1.3. listener:remove()

Removesatap Li st ener.

11.4.1.4. listener:__tostring()

Generates a string of debug info for thetap Li st ener .

11.4.1.5. listener.packet
Mode: Assign only.
A function that will be called once every packet matchesthe Li st ener listener filter.
When later called by Wireshark, the packet function will be given:
1. A Pi nf o object
2. A Tvb object
3. At api nf o table

function tap. packet (pinfo,tvb,tapinfo) ... end

Note

t api nf o isatable of info based on the "Listener’ s type, or nil.

11.4.1.6. listener.draw

Mode: Assign only.

A function that will be called once every few secondsto redraw the GUI objects; in Tshark thisfuntion

iscaled only at the very end of the capture file.

When later called by Wireshark, the dr aw function will not be given any arguments.

function tap.dram() ... end

11.4.1.7. listener.reset

Mode: Assign only.

87

Wireshark’s Lua API
Reference Manud

A function that will be called at the end of the capture run.

When later called by Wireshark, ther eset function will not be given any arguments.

function tap.reset() ... end

11.5. Obtaining packet information
11.5.1. Address

Represents an address.

11.5.1.1. Address.ip(hostname)

Creates an Address Object representing an | P address.

Arguments

hostname The address or name of the IP host.
Returns

The Address object.

11.5.1.2. address:___tostring()

Returns

The string representing the address.

11.5.1.3. address:__eq()

Compares two Addresses.

11.5.1.4. address:__le()

Compares two Addresses.

11.5.1.5. address:__It()
Compares two Addresses.
11.5.2. Column
A Column in the packet list.
11.5.2.1. column:__tostring()

Returns

The column’s string text (in parenthesisif not available).

11.5.2.2. column:clear()

Clears a Column.

88

Wireshark’s Lua API

Reference Manud
11.5.2.3. column:set(text)
Sets the text of a Column.
Arguments
text The text to which to set the Column.

11.5.2.4. column:append(text)
Appends text to a Column.
Arguments
text The text to append to the Column.
11.5.2.5. column:prepend(text)
Prepends text to a Column.
Arguments
text The text to prepend to the Column.
11.5.2.6. column:fence()
Sets Column text fence, to prevent overwriting.
Since: 1.10.6
11.5.2.7. column:clear_fence()

Clear Column text fence.

Since: 1.11.3
11.5.3. Columns
The Columns of the packet list.
11.5.3.1. columns:__tostring()
Returns
The string "Columns’, no real use, just for debugging purposes.
11.5.3.2. columns:___newindex(column, text)

Sets the text of a specific column.

Arguments
column The name of the column to set.
text The text for the column.

11.5.3.3. columns:__index()

Gets a specific Column.

89

Wireshark’s Lua API
Reference Manud

11.5.4. NSTime

NSTime represents anstime_t. This is an object with seconds and nanoseconds.

11.5.4.1. NSTime.new([seconds], [nseconds])

Creates anew NSTime object.

Arguments
seconds (optional) Seconds.
nseconds (optional) Nano seconds.
Returns

The new NSTime object.

11.5.4.2. nstime:___call([seconds], [nseconds])

Creates a NSTime object.

Arguments
seconds (optional) Seconds.
nseconds (optional) Nanoseconds.
Returns

The new NSTime object.

11.5.4.3. nstime:__tostring()

Returns

The string representing the nstime.

11.5.4.4. nstime:__add()

Calculates the sum of two NSTimes.

11.5.4.5. nstime:__sub()

Calculates the diff of two NSTimes.

11.5.4.6. nstime:__unm|()

Calculates the negative NSTime.

11.5.4.7. nstime:__eq()

Compares two NSTimes.

11.5.4.8. nstime:__le()

Compares two NSTimes.

90

Wireshark’s Lua API
Reference Manud

11.5.4.9. nstime:__It()

Compares two NSTimes.

11.5.4.10. nstime.secs
Mode: Retrieve or assign.
The NSTime seconds.

11.5.4.11. nstime.nsecs

Mode: Retrieve or assign.

The NSTime nano seconds.

11.5.5. Pinfo

Packet information.

11.5.5.1. pinfo.visited

Mode: Retrieve only.

Whether this packet has been already visited.
11.5.5.2. pinfo.number

Mode: Retrieve only.

The number of this packet in the current file.

11.5.5.3. pinfo.len
Mode: Retrieve only.
Thelength of the frame,

11.5.5.4. pinfo.caplen

Mode: Retrieve only.

The captured length of the frame.
11.5.5.5. pinfo.abs_ts

Mode: Retrieve only.

When the packet was captured.

11.5.5.6. pinfo.rel_ts

Mode: Retrieve only.

Number of seconds passed since beginning of capture.

11.5.5.7. pinfo.delta _ts

Mode: Retrieve only.

91

Wireshark’s Lua API
Reference Manud

Number of seconds passed since the last captured packet.

11.5.5.8. pinfo.delta_dis_ts

Mode: Retrieve only.

Number of seconds passed since the last displayed packet.
11.5.5.9. pinfo.circuit_id

Mode: Retrieve or assign.

For circuit based protocols.
11.5.5.10. pinfo.curr_proto

Mode: Retrieve only.

Which Protocol are we dissecting.
11.5.5.11. pinfo.can_desegment

Mode: Retrieve or assign.

Set if this segment could be desegmented.
11.5.5.12. pinfo.desegment_len

Mode: Retrieve or assign.

Estimated number of additional bytes required for completing the PDU.
11.5.5.13. pinfo.desegment_offset

Mode: Retrieve or assign.

Offset in the tvbuff at which the dissector will continue processing when next called.
11.5.5.14. pinfo.fragmented

Mode: Retrieve only.

If the protocol is only afragment.
11.5.5.15. pinfo.in_error_pkt

Mode: Retrieve only.

If we're inside an error packet.
11.5.5.16. pinfo.match_uint

Mode: Retrieve only.

Matched uint for calling subdissector from table.
11.5.5.17. pinfo.match_string

Mode: Retrieve only.

92

Wireshark’s Lua API
Reference Manud

Matched string for calling subdissector from table.

11.5.5.18. pinfo.port_type

Mode: Retrieve or assign.

Type of Port of .src_port and .dst_port.
11.5.5.19. pinfo.src_port

Mode: Retrieve or assign.

Source Port of this Packet.

11.5.5.20. pinfo.dst_port

Mode: Retrieve or assign.

Source Address of this Packet.

11.5.5.21. pinfo.dl_src

Mode: Retrieve or assign.

Data Link Source Address of this Packet.

11.5.5.22. pinfo.dl_dst

Mode: Retrieve or assign.
Data Link Destination Address of this Packet.
11.5.5.23. pinfo.net_src

Mode: Retrieve or assign.

Network Layer Source Address of this Packet.

11.5.5.24. pinfo.net_dst

Mode: Retrieve or assign.

Network Layer Destination Address of this Packet.

11.5.5.25. pinfo.src

Mode: Retrieve or assign.

Source Address of this Packet.

11.5.5.26. pinfo.dst

Mode: Retrieve or assign.

Destination Address of this Packet.

11.5.5.27. pinfo.match

Mode: Retrieve only.

93

Wireshark’s Lua API
Reference Manud

Port/Data we are matching.

11.5.5.28. pinfo.columns
Mode: Retrieve only.

Accesss to the packet list columns.

11.5.5.29. pinfo.cols

Mode: Retrieve only.
Accesss to the packet list columns (equivalent to pinfo.columns).
11.5.5.30. pinfo.private

Mode: Retrieve only.

Access to the private table entries.

11.5.5.31. pinfo.hi

Mode: Retrieve or assign.

Higher Address of this Packet.

11.5.5.32. pinfo.lo

Mode: Retrieve only.

Lower Address of this Packet.
11.5.5.33. pinfo.conversation

Mode: Assign only.

Sets the packet conversation to the given Proto object.

11.5.6. PrivateTable

PrivateTable represents the pinfo#private_table.
11.5.6.1. privatetable:__tostring()
Gets debugging type information about the private table.

Returns

A string with al keysin the table, mostly for debugging.

11.6. Functions for new protocols and

dissectors

The classes and functions in this chapter allow Lua scripts to create new protocols for Wireshark.
Pr ot o protocol objects can have Pr ef preferences, Pr ot oFi el d fields for filterable values that
can be displayed in adetails view tree, functions for dissecting the new protocol, and so on.

94

Wireshark’s Lua API
Reference Manud

The dissection function can be hooked into existing protocol tablesthrough Di ssect or Tabl es so
that the new protocol dissector function gets called by that protocol, and the new dissector can itself
call on other, already existing protocol dissectors by retrieving and calling the Di ssect or object.
A Pr ot o dissector can also be used as a post-dissector, at the end of every frame's dissection, or as
aheuristic dissector.

11.6.1. Dissector

A refererence to a dissector, used to call a dissector against a packet or a part of it.

11.6.1.1. Dissector.get(name)
Obtains a dissector reference by name.
Arguments
name The name of the dissector.
Returns
The Dissector reference.
11.6.1.2. Dissector.list()
GetsaLuaarray table of all registered Dissector names.
Note
thisis an expensive operation, and should only be used for troubleshooting.
Since: 1.11.3
Returns
The array table of registered dissector names.
11.6.1.3. dissector:call(tvb, pinfo, tree)

Calls adissector against a given packet (or part of it).

Arguments

tvb The buffer to dissect.

pinfo The packet info.

tree The tree on which to add the protocol items.
Returns

Number of bytes dissected. Note that some dissectors always return number of bytes in incoming
buffer, so be aware.

11.6.1.4. dissector:__ call(tvb, pinfo, tree)
Calls adissector against a given packet (or part of it).
Arguments

tvb The buffer to dissect.

95

Wireshark’s Lua API
Reference Manud

pinfo The packet info.

tree The tree on which to add the protocol items.

11.6.1.5. dissector:__tostring()
Gets the Dissector’s protocol short name.
Returns

A string of the protocol’s short name.

11.6.2. DissectorTable

A table of subdissectors of a particular protocol (e.g. TCP subdissectors like http, smtp, sip are added
to table "tcp.port™).

Useful to add more dissectors to a table so that they appear in the Decode As... dialog.

11.6.2.1. DissectorTable.new(tablename, [uiname], [type], [base])

Creates anew DissectorTable for your dissector’s use.

Arguments
tablename The short name of the table.
uiname (optional) Thename of thetableinthe User Interface (defaultsto the namegiven).
type (optional) Either ftypes. U NT8, ftypes. U NT16, ftypes. U NT24,
ftypes. U NT32, or ftypes.STRING (defaults to
ftypes. U NT32).
base (optional) Either base. NONE, base. DEC, base. HEX, base. OCT,
base. DEC HEX or base. HEX DEC (defaultsto base. DEC).
Returns

The newly created DissectorTable.

11.6.2.2. DissectorTable.list()

Gets a Lua array table of all DissectorTable names - i.e., the string names you can use for the first
argument to Dissector Table.get().

Note

thisis an expensive operation, and should only be used for troubleshooting.

Since: 1.11.3
Returns

The array table of registered DissectorTable names.
11.6.2.3. DissectorTable.heuristic_list()

Gets a Lua array table of al heuristic list names - i.e., the string names you can use for the first
argument in Proto:register_heuristic().

96

Wireshark’s Lua API
Reference Manud

Note
thisis an expensive operation, and should only be used for troubleshooting.
Since: 1.11.3
Returns
The array table of registered heuristic list names
11.6.2.4. DissectorTable.get(tablename)
Obtain areference to an existing dissector table.
Arguments
tablename The short name of the table.
Returns
The DissectorTable.
11.6.2.5. dissectortable:add(pattern, dissector)

Add aPr ot o with adissector function, or aDi ssect or object, to the dissector table.

Arguments
pattern The pattern to match (either an integer, a integer range or a string depending on
the table’ s type).
dissector The dissector to add (either aPr ot 0 or aDi ssect or).

11.6.2.6. dissectortable:set(pattern, dissector)

Remove existing dissectors from atable and add a new or arange of new dissectors.

Since: 1.11.3
Arguments
pattern The pattern to match (either an integer, a integer range or a string depending on
the table’ s type).
dissector The dissector to add (either aPr ot o0 or abDi ssect or).

11.6.2.7. dissectortable:remove(pattern, dissector)

Remove a dissector or arange of dissectors from atable

Arguments
pattern The pattern to match (either an integer, a integer range or a string depending on
the table’ s type).
dissector The dissector to remove (either aPr ot o or aDi ssect or).

11.6.2.8. dissectortable:remove_all(dissector)

Remove all dissectors from atable.

97

Wireshark’s Lua API

Reference Manual
Since: 1.11.3
Arguments
dissector The dissector to remove (either aPr ot o or aDi ssect or).

11.6.2.9. dissectortable:try(pattern, tvb, pinfo, tree)

Try to call adissector from atable

Arguments
pattern The pattern to be matched (either an integer or astring depending on the table' stype).
tvb The buffer to dissect.
pinfo The packet info.
tree The tree on which to add the protocol items.
Returns

Number of bytes dissected. Note that some dissectors always return number of bytes in incoming
buffer, so be aware.

11.6.2.10. dissectortable:get_dissector(pattern)
Try to obtain a dissector from atable.
Arguments
pattern The pattern to be matched (either an integer or astring depending on the tabl€’ stype).
Returns
The dissector handle if found.
nil if not found.
11.6.2.11. dissectortable:add for_decode_as(proto)

Addthegiven Pr ot o tothe"Decodeas..." list for this DissectorTable. The passed-in Pr ot 0 object’s
di ssect or () functionisused for dissecting.

Since: 1.99.1
Arguments
proto The Pr ot o to add.

11.6.2.12. dissectortable: _tostring()
Gets some debug information about the DissectorTable.
Returns

A string of debug information about the DissectorTable.

11.6.3. Pref

A preference of a Protocal.

98

Wireshark’s Lua API
Reference Manud

11.6.3.1. Pref.bool(label, default, descr)

Creates a boolean preference to be added to aPr ot 0. pr ef s Luatable.

Arguments
label The Label (text in the right side of the preference input) for this preference.
default The default value for this preference.
descr A description of what this preferenceis.

11.6.3.2. Pref.uint(label, default, descr)

Creates an (unsigned) integer preference to be added to aPr ot 0. pr ef s Luatable.

Arguments
label The Label (text in the right side of the preference input) for this preference.
default The default value for this preference.
descr A description of what this preferenceis.

11.6.3.3. Pref.string(label, default, descr)

Creates a string preference to be added to aPr ot 0. pr ef s Luatable.

Arguments
label The Label (text in the right side of the preference input) for this preference.
default The default value for this preference.
descr A description of what this preferenceis.

11.6.3.4. Pref.enum(label, default, descr, enum, radio)

Creates an enum preference to be added to aPr ot 0. pr ef s Luatable.

Arguments
label The Label (text in the right side of the preference input) for this preference.
default The default value for this preference.
descr A description of what this preferenceis.
enum An enum Luatable.
radio Radio button (true) or Combobox (false).

11.6.3.5. Pref.range(label, default, descr, max)

Creates arange preference to be added to aPr ot o. pr ef s Luatable.

Arguments
label The Label (text in the right side of the preference input) for this preference.
default The default value for this preference, e.g., "53", "10-30", or "10-30,53,55,100-120".

99

Wireshark’s Lua API

Reference Manual
descr A description of what this preferenceis.
max The maximum value.

11.6.3.6. Pref.statictext(label, descr)

Creates a static text string to be added to aPr ot 0. pr ef s Luatable.

Arguments

label The static text.

descr The static text description.
11.6.4. Prefs

The table of preferences of a protocol.

11.6.4.1. prefs:__newindex(name, pref)

Creates anew preference.

Arguments
name The abbreviation of this preference.
pref A valid but still unassigned Pref object.
Errors

e Unknow Pref type

11.6.4.2. prefs:__index(name)

Get the value of a preference setting.
Arguments

name The abbreviation of this preference.
Returns

The current value of the preference.
Errors

* Unknow Pref type

11.6.5. Proto

A new protocol in Wireshark. Protocols have more uses, the main oneisto dissect aprotocol. But they
can also be just dummies used to register preferences for other purposes.

11.6.5.1. Proto.new(name, desc)

Arguments

name The name of the protocoal.

100

Wireshark’s Lua API
Reference Manud

desc A Long Text description of the protocol (usualy lowercase).
Returns

The newly created protocol.
11.6.5.2. proto:___call(name, desc)

Creates a Pr ot 0 object.

Arguments

name The name of the protocol.

desc A Long Text description of the protocol (usualy lowercase).
Returns

The new Pr ot o object.

11.6.5.3. proto:register_heuristic(listname, func)
Registers a heuristic dissector function for this Pr ot o protocol, for the given heuristic list name.
When later called, the passed-in function will be given:
1. A Tvb object
2. A Pi nf o object
3. ATreel t emobject

The function must returnt r ue if the payload isfor it, elsef al se.

Thefunction should perform as much verification as possible to ensure the payload isfor it, and dissect
the packet (including setting Treeltem info and such) only if the payload is for it, before returning

true or false.

Sinceversion 1.99.1, thisfunction also accepts a Dissector object as the second argument, to allow re-
using the same Luacode asthef unct i on prot o. di ssector (.. .).Inthiscase, the Dissector
must return a Lua number of the number of bytes consumed/parsed: if O isreturned, it will be treated
the same as af al se return for the heuristic; if a positive or negative number is returned, then the
it will be treated the sasme as at r ue return for the heuristic, meaning the packet is for this protocol

and no other heuristic will be tried.

Since: 1.11.3
Arguments
listhame The heuristic list name this function is a heuristic for (e.g., "udp" or
"infiniband.payload").
func A Luafunction that will be invoked for heuristic dissection.

11.6.5.4. proto.dissector
Mode: Retrieve or assign.

The protocol’ s dissector, afunction you define.

101

Wireshark’s Lua API
Reference Manud

When later called, the function will be given:
1. A Tvb object
2. A Pi nf o object
3. A Treel t emobject
11.6.5.5. proto.prefs
Mode: Retrieve only.
The preferences of this dissector.
11.6.5.6. proto.prefs_changed
Mode: Assign only.

The preferences changed routine of this dissector, a Lua function you define.

11.6.5.7. proto.init

Mode: Assign only.

Theinit routine of this dissector, a function you define.

The called init function is passed no arguments.
11.6.5.8. proto.name

Mode: Retrieve only.

The name given to this dissector.
11.6.5.9. proto.description

Mode: Retrieve only.

The description given to this dissector.

11.6.5.10. proto.fields

Mode: Retrieve or assign.

The "ProtoField’s Luatable of this dissector.
11.6.5.11. proto.experts

Mode: Retrieve or assign.

The expert info Luatable of thisPr ot o.

Since: 1.11.3

11.6.6. ProtoExpert

A Protocol expert info field, to be used when adding items to the dissection tree.

Since: 1.11.3

102

Wireshark’s Lua API
Reference Manud

11.6.6.1. ProtoExpert.new(abbr, text, group, severity)

Createsanew Pr ot oExpert object to be used for a protocol’ s expert information notices.

Since: 1.11.3
Arguments
abbr Filter name of the expert info field (the string that is used in filters).
text The default text of the expert field.
group Expert group type: one of: expert. group. CHECKSUM
expert. group. SEQUENCE, expert. group. RESPONSE_CODE,
expert. group. REQUEST_CCDE, expert. group. UNDECODED,
expert. group. REASSEMBLE, expert. group. MALFORMED,
expert. group. DEBUG expert. group. PROTOCAO.,
expert. group. SECURI TY, expert. group. COWENTS _GROUP or
expert. group. DECRYPTI ON.
severity Expert severity type one of: expert.severity. COMVENT,
expert.severity. CHAT, expert.severity. NOTE,
expert.severity. WARN, or expert.severity. ERROR
Returns

The newly created Pr ot oExpert object.

11.6.6.2. protoexpert: __tostring()

Returns a string with debugging information about a Pr ot oExpert object.

Since: 1.11.3

11.6.7. ProtoField

A Protocol field (to be used when adding items to the dissection tree).

11.6.7.1. ProtoField.new(name, abbr, type, [valuestring], [base],

[mask], [descr])

Createsanew Pr ot oFi el d object to be used for a protocol field.

Arguments
name

abbr

type

Actua name of the field (the string that appears in the tree).
Filter name of the field (the string that is used in filters).

Field Type: one of: ftypes. BOOLEAN,
ftypes. U NT8, ftypes. U NT16, ftypes. U NT24,
ftypes. U NT32, ftypes. U NT64, ftypes.|NT8,
ftypes. | NT16, ftypes.|NT24, ftypes.|NT32,
ftypes. | NT64, ftypes. FLOAT, ftypes. DOUBLE |,
ftypes. ABSOLUTE_TI ME, ftypes. RELATI VE_TI ME,

ftypes. STRI NG ftypes. STRI N&Z,
ftypes. U NT_STRI NG ftypes. ETHER,
ftypes. BYTES, ftypes. U NT_BYTES,

ftypes.lPv4, ftypes.|Pv6, ftypes.|PXNET,

103

Wireshark’s Lua API
Reference Manud

ftypes. FRAMENUM ftypes. PCRE, ftypes. GUJ D,
ftypes. O D, ftypes. PROTOCOL, ftypes. REL_Q D,

ftypes. SYSTEM | D, ftypes. EU 64 or
ftypes. NONE.
valuestring (optional) A table containing the text that corresponds to the values,

or one of frametype. NONE, franmetype. REQUEST,

f ranet ype. RESPONSE, franet ype. ACK

or

franmet ype. DUP_ACKIf field typeis ftypes FRAMENUM.

base (optional) The representation, one of: base. NONE, base. DEC,

base. HEX, base. OCT, base. DEC HEX,
base. HEX DEC.

mask (optional) The bitmask to be used.
descr (optional) The description of the field.
Returns

The newly created Pr ot oFi el d object.

11.6.7.2. ProtoField.uint8(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of an unsigned 8-bit integer (i.e., abyte).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.3. ProtoField.uintl6(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of an unsigned 16-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.

or

104

Wireshark’s Lua API
Reference Manud

desc (optional) Description of thefield.
Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.4. ProtoField.uint24(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of an unsigned 24-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the tree).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.5. ProtoField.uint32(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of an unsigned 32-hit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actua name of the field (the string that appears in the tree).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.6. ProtoField.uint64(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of an unsigned 64-bit integer.
Arguments

abbr Abbreviated name of the field (the string used in filters).

105

Wireshark’s Lua API

Reference Manual
name (optional) Actual name of the field (the string that appearsin the tree).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.7. ProtoField.int8(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of asigned 8-bit integer (i.e., abyte).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.8. ProtoField.intl6(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of asigned 16-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

106

Wireshark’s Lua API
Reference Manud

11.6.7.9. ProtoField.int24(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of asigned 24-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) Oneof base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.10. ProtoField.int32(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of asigned 32-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.11. ProtoField.int64(abbr, [name], [base], [valuestring],
[mask], [desc])

Createsa Pr ot oFi el d of asigned 64-bit integer.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actua name of the field (the string that appears in the tree).
base (optional) One of base. DEC, base. HEX or base. OCT.
valuestring (optional) A table containing the text that corresponds to the values.

107

Wireshark’s Lua API

Reference Manual
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.12. ProtoField.framenum(abbr, [name], [base], [frametype],
[mask], [desc])

Createsa Pr ot oFi el d for aframe number (for hyperlinks between frames).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) Only base. NONE is supported for framenum.
frametype (optional) One of franmetype. NONE, franetype. REQUEST,
franet ype. RESPONSE, franet ype. ACK or
franet ype. DUP_ACK.
mask (optional) Integer mask of thisfield, which must be O for framenum.
desc (optional) Description of thefield.
Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.13. ProtoField.bool(abbr, [name], [display], [valuestring],
[mask], [desc])

Creates aPr ot oFi el d for aboolean true/false value.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appears in the tree).
display (optional) How wide the parent bitfield is (base. NONE is used for

NULL-value).

valuestring (optional) A table containing the text that corresponds to the values.
mask (optional) Integer mask of thisfield.
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.14. ProtoField.absolute_time(abbr, [name], [base], [desc])

Createsa Pr ot oFi el d of atime _t structure value.

108

Wireshark’s Lua API

Reference Manual
Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
base (optional) Oneof base. LOCAL, base. UTCor base. DOY_UTC.
desc (optional) Description of the field.
Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.15. ProtoField.relative_time(abbr, [name], [desc])

CreatesaPr ot oFi el d of atime_t structure value.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actua name of the field (the string that appears in the tree).
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.16. ProtoField.none(abbr, [name], [desc])

Createsa Pr ot oFi el d of an unstructured type.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.17. ProtoField.ipv4(abbr, [name], [desc])

Createsa Pr ot oFi el d of an IPv4 address (4 bytes).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

109

Wireshark’s Lua API
Reference Manud

11.6.7.18. ProtoField.ipv6(abbr, [name], [desc])

CreatesaPr ot oFi el d of an IPv6 address (16 bytes).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actua name of the field (the string that appears in the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.19. ProtoField.ether(abbr, [name], [desc])

Createsa Pr ot oFi el d of an Ethernet address (6 bytes).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.20. ProtoField.float(abbr, [name], [desc])

Createsa Pr ot oFi el d of afloating point number (4 bytes).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.21. ProtoField.double(abbr, [name], [desc])

Createsa Pr ot oFi el d of adouble-precision floating point (8 bytes).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of the field.

110

Wireshark’s Lua API
Reference Manud

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.22. ProtoField.string(abbr, [name], [desc])

Createsa Pr ot oFi el d of astring value.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.23. ProtoField.stringz(abbr, [name], [desc])

Createsa Pr ot oFi el d of azero-terminated string value.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appears in the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.24. ProtoField.bytes(abbr, [name], [desc])

Createsa Pr ot oFi el d for an arbitrary number of bytes.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set to the Pr ot 0. f i el ds attribute.

11.6.7.25. ProtoField.ubytes(abbr, [name], [desc])

Createsa Pr ot oFi el d for an arbitrary number of unsigned bytes.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the tree).

111

Wireshark’s Lua API
Reference Manud

desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.26. ProtoField.guid(abbr, [name], [desc])

Createsa Pr ot oFi el d for aGlobally Unique I Dentifier (GUID).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actua name of the field (the string that appearsin the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.27. ProtoField.oid(abbr, [name], [desc])

Createsa Pr ot oFi el d for an ASN.1 Organizational |Dentified (OID).

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.28. ProtoField.protocol(abbr, [name], [desc])

Createsa Pr ot oFi el d for asub-protocol. Since 1.99.9.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.
11.6.7.29. ProtoField.rel_oid(abbr, [name], [desc])
CreatesaPr ot oFi el d for an ASN.1 Relative-OID.

Arguments

abbr Abbreviated name of the field (the string used in filters).

112

Wireshark’s Lua API

Reference Manual
name (optional) Actual name of the field (the string that appearsin the tree).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.30. ProtoField.systemid(abbr, [name], [desc])

Createsa Pr ot oFi el d for an OSl System ID.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of the field.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.31. ProtoField.eui64(abbr, [name], [desc])

Createsa Pr ot oFi el d for an EUI64.

Arguments
abbr Abbreviated name of the field (the string used in filters).
name (optional) Actual name of the field (the string that appearsin the treg).
desc (optional) Description of thefield.

Returns

A Pr ot oFi el d object to be added to atable set tothe Pr ot 0. f i el ds attribute.

11.6.7.32. protofield: _tostring()

Returns a string with info about a protofield (for debugging purposes).

11.6.8. Global Functions
11.6.8.1. register_postdissector(proto, [allfields])

Make a Pr ot o protocol (with a dissector function) a post-dissector. It will be called for every frame

after dissection.
Arguments
proto The protocol to be used as post-dissector.
allfields (optional) Whether to generate all fields.
Note

this impacts performance (default=fal se).

113

Wireshark’s Lua API
Reference Manud

11.6.8.2. dissect_tcp_pdus(tvb, tree, size, func, func,
[desegment])

Make the TCP-layer invoke the given Lua dissection function for each PDU in the TCP segment, of
the length returned by the given get_len_func function.

Thisfunctionisuseful for protocolsthat run over TCP and that are either afixed length aways, or have
aminimum size and have alength field encoded within that minimum portion that identifies their full
length. For such protocols, their protocol dissector function caninvokethisdi ssect _t cp_pdus()
function to make it easier to handle dissecting their protocol’ s messages (i.e., their protocol data unit
(PDU)). Thisfunction shouild not be used for protocolswhose PDU length cannot be determined from
afixed minimum portion, such asHTTP or Telnet.

Since: 1.99.2
Arguments

tvb The Tvb buffer to dissect PDUs from.

tree The Tvb buffer to dissect PDUs from.

size The number of bytesin the fixed-length part of the PDU.

func A Lua function that will be called for each PDU, to dissect the
PDU. The called function will be given (1) the Tvb object of
the PDU’s Tvb (possibly reassembled), (2) the Pi nf o object,
and (3) the Tr eel t emobject. The Lua function must return a
Lua number of the number of bytes read/handled, which would
typically bethe Tvb: I en() .

func A Lua function that will be called for each PDU, to dissect the
PDU. The called function will be given (1) the Tvb object of
the PDU’s Tvb (possibly reassembled), (2) the Pi nf o object,
and (3) the Tr eel t emobject. The Lua function must return a
Lua number of the number of bytes read/handled, which would
typicaly bethe Tvb: | en().

desegment (optional) Whether to reassemble PDUs crossing TCP segment boundaries

or not. (default=true)

11.7. Adding information to the dissection
tree

11.7.1. Treeltem

Tr eel t ens represent information in the packet-details pane of Wireshark, and the packet details
view of Tshark. A Tr eel t emrepresents a node in the tree, which might also be a subtree and have
alist of children. The children of a subtree have zero or more siblings: other children of the same
Tr eel t emsubtree.

During dissection, heuristic-dissection, and post-dissection, a root Treeltem is
passed to dissectors as the third argument of the function calback (eg.,
nmypr ot o. di ssect or (t vbuf, pkti nfo, root)).

In some casesthetreeis not truly added to, in order to improve performance. For example for packets
not currently displayed/selected in Wireshark’s visible window pane, or if Tshark isn’t invoked with
the - V switch. However the "add" type Tr eel t emfunctions can still be called, and still return

114

Wireshark’s Lua API
Reference Manud

Tr eel t emabjects - but theinfo isn't really added to the tree. Therefore you do not typically need to
worry about whether there' s areal tree or not. If, for some reason, you need to know it, you can use
thet r ee. vi si bl e attribute getter to retrieve the state.

11.7.1.1. treeitem:add_packet_field(protofield, [tvbrange],
encoding, [label])

Adds a new child tree for the given Pr ot oFi el d object to this tree item, returning the new child
Treeltem

Unlike Treeltem add() and Treeltem add_I| e(), the Prot oFi el d argument is not
optional, and cannot be a Pr ot o object. Instead, this function always uses the Pr ot oFi el d to
determine the type of field to extract from the passed-in TvbRange, highlighting the relevant bytes
in the Packet Bytes pane of the GUI (if there is a GUI), etc. If no TvbRange is given, no bytes are
highlighted and the field’s value cannot be determined; the Pr ot oFi el d must have been defined/
created not to have alength in such acase, or an error will occur. For backwards-compatibility reasons
theencodi ng argument, however, must still be given.

Unlike Treel t em add() and Treel tem add_| e(), this function performs both big-endian
and little-endian decoding, by setting the encodi ng argument to be ENC Bl G_ENDI AN or
ENC_LI TTLE_ENDI AN.

The signature of this function:

tree_item add_packet _field(proto_field [,tvbrange], encoding, ...)

In Wireshark version 1.11.3, this function was changed to return more than just the new child
Treel t em The child is the first return value, so that function chaining will still work as before;
but it now also returns the value of the extracted field (i.e., a number, Ul nt 64, Addr ess, etc.). If
the value could not be extracted from the TvbRange, the child Tr eel t emis still returned, but the
second returned valueisni | .

Another new feature added to this function in Wireshark version 1.11.3 isthe ability to extract native
number Prot oFi el d s from string encoding in the "~ TvbRange, for ASClI-based
and similar string encodings. For example, a Pr ot oFi el d of asft ypes. U NT32 type can be
extracted fromaTvbRange containing the ASCII string " 123", and it will correctly decodethe ASCII
tothenumber 123, both in thetree aswell asfor the second return value of thisfunction. To do so, you
must set theencodi ng argument of thisfunction to the appropriate string ENC_* value, bitwise-or'd
withthe ENC_STRI NGvalue(seei ni t . | ua). ENC_STRI NGis guaranteed to be a unique bit flag,
and thus it can added instead of bitwise-or’ed as well. Only single-byte ASCII digit string encoding
types can be used for this, such asENC_ASCI | and ENC_UTF_8.

For example, assuming the Tvb named "t vb" contains the string "123";

-- this is done earlier in the script
local nyfield = ProtoField. new("Transaction ID', "nyproto.trans_id", ftypes. U NT16)

-- this is done inside a dissector, post-dissector, or heuristic function
-- child will be the created child tree, and value will be the number 123 or nil on failure
local child, value = tree: add_packet _field(nyfield, tvb:range(0,3), ENC UTF_8 + ENC _STRI NG

Arguments
protofield The ProtoField field object to add to the tree.
tvbrange (optional) The TvbRange of bytes in the packet this tree item covers/
represents.
encoding Thefield’ s encoding in the TvbRange.
label (optional) One or more strings to append to the created Tr eel t em

115

Wireshark’s Lua API
Reference Manud

Returns

The new child Tr eel t em thefield' s extracted value or nil, and offset or nil.

11.7.1.2. treeitem:add([protofield], [tvbrange], [value], [label])

Adds achild item to this tree item, returning the new child Tr eel t em

If the Pr ot oFi el d represents a numeric value (int, uint or float), then it’s treated as a Big Endian
(network order) value.

This function has a complicated form: treeitem:add([protofield,] [tvbrange,] valug], label), such that
if thefirst argumentisaPr ot oFi el d or aPr ot 0, the second argumentisaTvbRange, and athird
argument is given, it's a value; but if the second argument is a non-TvbRange, then it's the value
(as opposed to filling that argument with nil, which isinvalid for this function). If the first argument
isanon-Pr ot oFi el d and anon-Pr ot o then this argument can be either aTvbRange or alabel,
and the value isnot in use.

Arguments
protofield (optional) The ProtoField field or Proto protocol object to add to the tree.
tvbrange (optional) The TvbRange of bytes in the packet this tree item covers/
represents.
value (optional) Thefield svalue, instead of the ProtoField/Proto one.
label (optional) One or more strings to use for the tree item label, instead of the
ProtoField/Proto one.
Returns

The new child Treeltem.

11.7.1.3. treeitem:add_le([protofield], [tvbrange], [value], [label])
Adds achild item to this tree item, returning the new child Tr eel t em

If the Pr ot oFi el d represents anumeric value (int, uint or float), then it’' streated as a Little Endian
value.

This function has a complicated form: treeitem:add _le([protofield,] [tvbrange,] value], label), such
that if thefirst argument isaPr ot oFi el d or aPr ot o, the second argumentisaTvbRange, and a
third argument isgiven, it' savalue; but if the second argumentisanon-TvbRange, thenit’ sthevalue
(as opposed to filling that argument with nil, which isinvalid for this function). If the first argument
isanon-Pr ot oFi el d and anon-Pr ot o then this argument can be either a TvbRange or alabel,
and the value isnot in use.

Arguments
protofield (optional) The ProtoField field or Proto protocol object to add to the tree.
tvbrange (optional) The TvbRange of bytes in the packet this tree item covers/
represents.
value (optional) Thefield svalue, instead of the ProtoField/Proto one.
label (optional) One or more strings to use for the tree item label, instead of the
ProtoField/Proto one.

116

Wireshark’s Lua API
Reference Manud

Returns

The new child Treeltem.

11.7.1.4. treeitem:set_text(text)

Sets the text of the label.

This used to return nothing, but as of 1.11.3 it returns the same tree item to alow chained calls.
Arguments

text The text to be used.
Returns

The same Treeltem.

11.7.1.5. treeitem:append_text(text)

Appends text to the label.

This used to return nothing, but as of 1.11.3 it returns the same tree item to alow chained calls.
Arguments

text The text to be appended.
Returns

The same Treeltem.

11.7.1.6. treeitem:prepend_text(text)

Prepends text to the label.

This used to return nothing, but as of 1.11.3 it returns the same tree item to allow chained calls.
Arguments

text The text to be prepended.
Returns

The same Treeltem.

11.7.1.7. treeitem:add_expert_info([group], [severity], [text])
Sets the expert flags of the item and adds expert info to the packet.

This function does not create a truly filterable expert info for a protocol. Instead you should use
Treel tem add_prot o_expert_info().

Note

This function is provided for backwards compatibility only, and should not be
used in new Lua code. It may be removed in the future. You should only use
Treeltem add_proto_expert _info().

117

Wireshark’s Lua API

Reference Manual
Arguments
group (optional) Oneof PI _CHECKSUM Pl _ SEQUENCE, PI _ RESPONSE_CODE,
Pl _REQUEST_CODE, Pl _UNDECODED, Pl _REASSEMBLE,
Pl _MALFORMED or PI _DEBUG
severity (optional) Oneof PI _CHAT, Pl _NOTE, PI _WARN, or PI _ ERROR.
text (optional) The text for the expert info display.
Returns

The same Treeltem.

11.7.1.8. treeitem:add_proto_expert_info(expert, [text])

Sets the expert flags of the tree item and adds expert info to the packet.

Since: 1.11.3
Arguments
expert The Pr ot oExpert object to add to the tree.
text (optional) Text for the expert info display (default is to use the registered text).

Returns

The same Treeltem.

11.7.1.9. treeitem:add_tvb_expert_info(expert, tvb, [text])

Sets the expert flags of the tree item and adds expert info to the packet associated with the Tvb or
TvbRange bytesin the packet.

Since: 1.11.3
Arguments
expert The Pr ot oExpert object to add to the tree.
tvb The Tvb or TvbRange object bytes to associate the expert info with.
text (optional) Text for the expert info display (default is to use the registered text).
Returns

The same Treeltem.

11.7.1.10. treeitem:set_generated([bool])
Marksthe Tr eel t emas a generated field (with datainferred but not contained in the packet).
This used to return nothing, but as of 1.11.3 it returns the same tree item to allow chained calls.
Arguments

bool (optional) A Lua boolean, which if t r ue setsthe Tr eel t emgenerated flag, else
clearsit (default=true)

118

Wireshark’s Lua API
Reference Manud

Returns

The same Treeltem.

11.7.1.11. treeitem:set_hidden([bool])

Marksthe Tr eel t emasahidden field (neither displayed nor used in filters).

This used to return nothing, but as of 1.11.3 it returns the same tree item to allow chained calls.
Arguments

bool (optional) A Luaboolean, whichift r ue setstheTr eel t emhiddenflag, elseclears
it (default=true)

Returns

The same Treeltem.

11.7.1.12. treeitem:set_len(len)

Set "Treeltem’slength inside tvb, after it has already been created.

This used to return nothing, but as of 1.11.3 it returns the same tree item to alow chained calls.
Arguments

len The length to be used.
Returns

The same Treeltem.

11.7.1.13. treeitem:___tostring()
Returns string debug information about the Tr eel t em
Since: 1.99.8

11.7.1.14. treeitem.text

Mode: Retrieve or assign.
Set/get the "Treeltem’ sdisplay string (string).
For the getter, if the Treeltem has no display string, then nil is returned.

Since: 1.99.3

11.7.1.15. treeitem.visible

Mode: Retrieve only.
Get the "Treeltem’ s subtree visihility status (boolean).
Since: 1.99.8

11.7.1.16. treeitem.generated

Mode: Retrieve or assign.

119

Wireshark’s Lua API
Reference Manud

Set/get the "Treeltem’ s generated state (boolean).

Since: 1.99.8

11.7.1.17. treeitem.hidden

Mode: Retrieve or assign.
Set/get “Treeltem’s hidden state (boolean).

Since: 1.99.8

11.7.1.18. treeitem.len

Mode: Retrieve or assign.
Set/get “Treeltem’ s length inside tvb, after it has already been created.

Since: 1.99.8

11.8. Functions for handling packet data

11.8.1. ByteArray
11.8.1.1. ByteArray.new([hexbytes], [separator])

Createsa Byt eAr r ay object.

Startinginversion 1.11.3, if the second argument isabooleant r ue, then thefirst argyument istreated
asaraw Luastring of bytesto use, instead of a hexadecimal string.

Arguments
hexbytes (optional) A string consisting of hexadecimal bytes like "00 B1 A2" or
"1a2b3cAd".
separator (optional) A string separator between hex bytes/words (default=""), or if the
boolean valuet r ue is used, then the first argument is treated as
raw binary data
Returns
The new ByteArray object.

11.8.1.2. ByteArray.tvb(name)

Createsanew Tvb from aByt eAr r ay (it gets added to the current frame too).

Arguments

name The name to be given to the new data-source.
Returns

The created Tvb.

11.8.1.3. bytearray: _concat(first, second)

Concatenate two Byt eAr r ays.

120

Wireshark’s Lua API

Reference Manual
Arguments
first First array.
second Second array.
Returns

The new composite Byt eAr r ay.

11.8.1.4. bytearray:__eq(first, second)

Compares two ByteArray values.

Since: 1.11.4
Arguments

first First array.

second Second array.

11.8.1.5. bytearray:prepend(prepended)

Prepend aByt eAr r ay tothisByt eArr ay.
Arguments

prepended Byt eAr r ay to be prepended.
11.8.1.6. bytearray:append(appended)

Append aByt eArr ay tothisByt eArray.
Arguments

appended Byt eAr r ay to be appended.
11.8.1.7. bytearray:set_size(size)

Setsthe size of aByt eAr r ay, either truncating it or filling it with zeros.
Arguments

size New size of the array.
Errors

» ByteArray size must be non-negative
11.8.1.8. bytearray:set_index(index, value)

Setsthe value of anindex of aByt eArr ay.

Arguments
index The position of the byte to be set.
value The char value to set [0-255].

121

Wireshark’s Lua API
Reference Manud

11.8.1.9. bytearray:get_index(index)
Get thevalue of abyteinaByt eArr ay.
Arguments
index The position of the byte to get.
Returns

The value [0-255] of the byte.
11.8.1.10. bytearray:len()
Obtain the length of aByt eAr r ay.
Returns
Thelength of the Byt eAr r ay.
11.8.1.11. bytearray:subset(offset, length)

Obtain asegment of aByt eAr r ay, asanew Byt eArr ay.

Arguments
offset The position of the first byte (O=first).
length The length of the segment.
Returns

A Byt eAr r ay containing the requested segment.

11.8.1.12. bytearray:base64 decode()

Obtain abase64 decoded Byt eAr r ay.

Since: 1.11.3
Returns
The created Byt eAr r ay.
11.8.1.13. bytearray:raw([offset], [length])

Obtain aLuastring of the binary bytesin aByt eArr ay.

Since: 1.11.3
Arguments
offset (optional) The position of the first byte (default=0/first).
length (optional) The length of the segment to get (default=all).
Returns

A Luastring of the binary bytesin the ByteArray.

122

Wireshark’s Lua API
Reference Manud

11.8.1.14. bytearray:tohex([lowercase], [separator])

Obtain aLuastring of the bytesin aByt eAr r ay as hex-asctii, with given separator

Since: 1.11.3

Arguments
lowercase (optional) True to use lower-case hex characters (default=fal se).
separator (optional) A string separator to insert between hex bytes (default=nil).

Returns

A hex-ascii string representation of the Byt eAr r ay.

11.8.1.15. bytearray: _tostring()

Obtain aLuastring containing the bytesinaByt eAr r ay sothat it can be used in display filters (e.g.
"01FE456789AB").

Returns

A hex-ascii string representation of the Byt eAr r ay.

11.8.2. Tvb

A Tvb represents the packet’s buffer. It is passed as an argument to listeners and dissectors, and can
be used to extract information (via TvbRange) from the packet’s data.

TocreateaTvbRange the Tvb must be called with offset and length as optional arguments; the offset
defaultsto 0 and the lengthtot vb: | en() .

Warning
Tvbs are usable only by the current listener or dissector call and are destroyed as soon

as the listener/dissector returns, so references to them are unusable once the function
has returned.

11.8.2.1. tvb: _tostring()

Convert the bytes of a Tvb into a string, to be used for debugging purposes, as ... will be appended
if the string is too long.

Returns

The string.
11.8.2.2. tvb:reported _len()

Obtain the reported (not captured) length of a Tvb.
Returns

The reported length of the Tvb.
11.8.2.3. tvb:len()

Obtain the actual (captured) length of aTvb.

123

Wireshark’s Lua API
Reference Manud

Returns

The captured length of the Tvb.

11.8.2.4. tvb:reported _length_remaining()

Obtain the reported (not captured) length of packet datato end of a Tvb or -1 if the offset is beyond
theend of the Tvb.

Returns
The captured length of the Tvb.

11.8.2.5. tvb:bytes([offset], [length])

Obtain aByt eArr ay fromaTvb.

Since: 1.99.8
Arguments
offset (optional) The offset (in octets) from the beginning of the Tvb. Defaultsto 0.
length (optional) Thelength (in octets) of therange. Defaultsto until theend of the Tvb.
Returns

The Byt eAr r ay object or nil.

11.8.2.6. tvb:offset()
Returns the raw offset (from the beginning of the source Tvb) of asub Tvb.
Returns

The raw offset of the Tvb.

11.8.2.7. tvb:__call()

Equivalent to tvb:range(...)

11.8.2.8. tvb:range([offset], [length])

Createsa TvbRange fromthis Tvb.

Arguments
offset (optional) The offset (in octets) from the beginning of the Tvb. Defaultsto O.
length (optional) Thelength (in octets) of therange. Defaultsto until theend of the Tvb.
Returns
The TvbRange

11.8.2.9. tvb:raw([offset], [length])

Obtain a Luastring of the binary bytesinaTvb.

124

Wireshark’s Lua API

Reference Manual
Since: 1.11.3
Arguments
offset (optional) The position of the first byte (default=0/first).
length (optional) The length of the segment to get (default=all).
Returns

A Luastring of the binary bytesin the Tvb.

11.8.2.10. tvb: __eq()

Checks whether the two Tvb contents are equal .

Since: 1.99.8

11.8.3. TvbRange

A TvbRange represents a usable range of a Tvb and is used to extract data from the Tvb that
generated it.

TvbRange's are created by calling a "~ Tvb (eg. tvb(offset,length)). If the TvbRange
span is outside the “Tvb'’ s range the creation will cause a runtime error.

11.8.3.1. TvbRange.tvb(range)
Createsa (sub)Tvb fromaTvbRange.
Arguments

range The TvbRange from which to create the new Tvb.

11.8.3.2. tvbrange:uint()

Get a Big Endian (network order) unsigned integer from a TvbRange. The range must be 1, 2, 3
or 4 octetslong.

Returns

The unsigned integer value.

11.8.3.3. tvbrange:le_uint()
Get a Little Endian unsigned integer from a TvbRange. The range must be 1, 2, 3 or 4 octets long.
Returns

The unsigned integer value

11.8.3.4. tvbrange:uint64()

Get a Big Endian (network order) unsigned 64 bit integer from a TvbRange, asa Ul nt 64 object.
The range must be 1-8 octets long.

Returns

The Ul nt 64 object.

125

Wireshark’s Lua API
Reference Manud

11.8.3.5. tvbrange:le _uint64()

Get a Little Endian unsigned 64 bit integer from a TvbRange, asa Ul nt 64 object. The range must
be 1-8 octets long.

Returns

The Ul nt 64 object.

11.8.3.6. tvbrange:int()

Get a Big Endian (network order) signed integer from a TvbRange. The range must be 1, 2 or 4
octets long.

Returns

The signed integer value

11.8.3.7. tvbrange:le_int()
Get a Little Endian signed integer from a TvbRange. The range must be 1, 2 or 4 octets long.
Returns

The signed integer value.

11.8.3.8. tvbrange:int64()

Get aBig Endian (network order) signed 64 bit integer fromaTvbRange, asan | nt 64 object. The
range must be 1, 2, 4 or 8 octets long.

Returns

Thel nt 64 object.

11.8.3.9. tvbrange:le_int64()

Get a Little Endian signed 64 bit integer from a TvbRange, as an | nt 64 object. The range must
be 1, 2, 4 or 8 octets long.

Returns

Thel nt 64 object.

11.8.3.10. tvbrange:float()

Get a Big Endian (network order) floating point number from a TvbRange. The range must be 4
or 8 octetslong.

Returns
The floating point value.

11.8.3.11. tvbrange:le float()

Get a Little Endian floating point number from a TvbRange. The range must be 4 or 8 octets long.

126

Wireshark’s Lua API
Reference Manud

Returns

The floating point value.

11.8.3.12. tvbrange:ipv4()

Get an IPv4 Addressfrom aTvbRange, asan Addr ess object.
Returns

The IPv4 Addr ess object.
11.8.3.13. tvbrange:le_ipv4()

Get an Little Endian IPv4 Address from a TvbRange, asan Addr ess object.
Returns

The IPv4 Addr ess object.
11.8.3.14. tvbrange:ether()

Get an Ethernet Addressfrom aTvbRange, asan Addr ess object.
Returns

The Ethernet Addr ess object.
Errors

» Therange must be 6 byteslong
11.8.3.15. tvbrange:nstime([encoding])

Obtain atime _t structure from a TvbRange, asan NSTi ne object.
Arguments

encoding (optional) An optional ENC_* encoding value to use
Returns

The NSTi e object and number of bytes used, or nil on failure.
Errors

» Therange must be 4 or 8 byteslong
11.8.3.16. tvbrange:le_nstime()

Obtain anstime from aTvbRange, asan NSTi ne object.
Returns

The NSTi e object.
Errors

e Therange must be 4 or 8 byteslong

127

Wireshark’s Lua API
Reference Manud

11.8.3.17. tvbrange:string([encoding])
Obtain astring froma TvbRange.
Arguments
encoding (optional) The encoding to use. Defaultsto ENC_ASCII.
Returns
The string
11.8.3.18. tvbrange:ustring()
Obtain aBig Endian (network order) UTF-16 encoded string from a TvbRange.
Returns
The string.
11.8.3.19. tvbrange:le_ustring()
Obtain a Little Endian UTF-16 encoded string from a TvbRange.
Returns
The string.
11.8.3.20. tvbrange:stringz(Jencoding])
Obtain a zero terminated string from a TvbRange.
Arguments
encoding (optional) The encoding to use. Defaultsto ENC_ASCII.
Returns
The zero terminated string.
11.8.3.21. tvbrange:strsize([encoding])

Find the size of a zero terminated string from a TvbRange. The size of the string includes the
terminating zero.

Since: 1.11.3
Arguments

encoding (optional) The encoding to use. Defaultsto ENC_ASCII.
Returns

Length of the zero terminated string.
11.8.3.22. tvbrange:ustringz()

Obtain aBig Endian (network order) UTF-16 encoded zero terminated string from a TvbRange.

128

Wireshark’s Lua API
Reference Manud

Returns

Two return values:. the zero terminated string, and the length.

11.8.3.23. tvbrange:le_ustringz()
Obtain a Little Endian UTF-16 encoded zero terminated string from a TvbRange
Returns

Two return values: the zero terminated string, and the length.

11.8.3.24. tvbrange:bytes([encoding])

Obtain aByt eAr r ay fromaTvbRange.

Starting in 1.11.4, this function also takes an optional encodi ng argument, which can be set to
ENC_STR_HEX to decode a hex-string from the TvbRange into the returned Byt eArr ay. The
encodi ng can be bitwise-or’ ed with one or more separator encodings, such as ENC_SEP_COLON,
to allow separators to occur between each pair of hex characters.

The return value also now returns the number of bytes used as a second return value.

On failure or error, nil isreturned for both return values.

Note

The encoding type of the hex string should also be set, for example ENC_ASCI | or
ENC_UTF_8, dong with ENC_STR_HEX.

Arguments

encoding (optional) An optional ENC_* encoding value to use
Returns

The Byt eAr r ay object or nil, and number of bytes consumed or nil.
11.8.3.25. tvbrange:bitfield([position], [length])

Get abitfield from a TvbRange.

Arguments
position (optional) The bit offset from the beginning of the TvbRange. Defaultsto 0.
length (optional) Thelength (in bits) of the field. Defaultsto 1.

Returns

The bitfield value

11.8.3.26. tvbrange:range([offset], [length])
Creates asub-TvbRange from this TvbRange.
Arguments

offset (optional) The offset (in octets) from the beginning of the TvbRange. Defaults
to 0.

129

Wireshark’s Lua API

Reference Manual
length (optional) The length (in octets) of the range. Defaults to until the end of the
TvbRange.
Returns
The TvbRange

11.8.3.27. tvbrange:uncompress(name)

Obtain an uncompressed TvbRange from a TvbRange

Arguments

name The name to be given to the new data-source.
Returns

The TvbRange

11.8.3.28. tvbrange:len()

Obtain the length of aTvbRange.

11.8.3.29. tvbrange:offset()

Obtain the offsetina TvbRange.

11.8.3.30. tvbrange:raw([offset], [length])

Obtain aLuastring of the binary bytesinaTvbRange.

Since: 1.11.3
Arguments
offset (optional) The position of the first byte (default=0/first).
length (optional) The length of the segment to get (default=all).
Returns

A Luastring of the binary bytesin the TvbRange.

11.8.3.31. tvbrange: _eq()

Checks whether the two TvbRange contents are equal .

Since: 1.99.8

11.8.3.32. tvbrange:__tostring()

Converts the TvbRange into a string. Since the string gets truncated, you should use this only for
debugging purposes or if what you want isto have atruncated string in the format 67:89:AB:...

Returns

A Luahex string of the first 24 binary bytesin the TvbRange.

130

Wireshark’s Lua API
Reference Manud

11.9.

Custom file format reading/writing

The classes/functions defined in this section allow you to create your own custom L ua-based " capture”
file reader, or writer, or both.

Since: 1.11.3

11.9.1. Capturelnfo

A Capt ur el nf o object, passed into Lua as an argument by Fi | eHandl er callback function
read_open(), read(), seek_read(), seq_read_cl ose(), andread_cl ose(). This
object represents capturefile dataand meta-data (dataabout the capturefile) being read into Wireshark/
Tshark.

This object’ sfields can be written-to by Lua during the read-based function callbacks. In other words,
when the Lua plugin’s Fi | eHandl er. read_open() function is invoked, a Capt ur el nf o
object will be passed in as one of the arguments, and its fields should be written to by your Lua code
to tell Wireshark about the capture.

Since: 1.11.3

11.9.1.1. captureinfo:__tostring()

Returns

Generates a string of debug info for the Capturelnfo

String of debug information.

11.9.1.2. captureinfo.encap

Mode: Retrieve or assign.
The packet encapsulation type for the wholefile.

See wt ap_encaps ininit. | ua for available types. Set to wt ap_encaps. PER_PACKET if
packets can have different types, then later set Fr anmel nf 0. encap for each packet duringr ead() /
seek_read().

11.9.1.3. captureinfo.time_precision

Mode: Retrieve or assign.
The precision of the packet timestamps in the file.

Seewt ap_file_tsprecininit.| ua foravalableprecisions.

11.9.1.4. captureinfo.snapshot_length

Mode: Retrieve or assign.
The maximum packet length that could be recorded.

Setting it to 0 means unknown. Wireshark cannot handle anything bigger than 65535 bytes.

11.9.1.5. captureinfo.comment

Mode: Retrieve or assign.

131

Wireshark’s Lua API
Reference Manud

A string comment for the whole capturefile, or nil if thereisno comment .

11.9.1.6. captureinfo.hardware

Mode: Retrieve or assign.

A string containing the description of the hardware used to create the capture, or nil if there is no
har dwar e string.

11.9.1.7. captureinfo.os
Mode: Retrieve or assign.

A string containing the name of the operating system used to create the capture, or nil if thereis no
0s string.

11.9.1.8. captureinfo.user_app
Mode: Retrieve or assign.

A string containing the name of the application used to create the capture, or nil if there is no
user _app string.

11.9.1.9. captureinfo.hosts

Mode: Assign only.
Sets resolved ip-to-hostname information.

The value set must be a Lua table of two key-ed names. ipv4_addresses and
i pv6_addr esses. Thevalue of each of these names are themselves array tables, of key-ed tables,
such that the inner table has a key addr set to the raw 4-byte or 16-byte IP address Lua string and
anarme set to the resolved name.

For example, if the capture file identifies one resolved IPv4 address of 1.2.3.4tof 00. com thenyou
must set Capt ur el nf 0. host s to atable of:

{ ipv4_addresses = { { addr = "\01\02\ 03\ 04", nane = "foo.coni } } }

Note that either the i pv4_addr esses or thei pv6_addr esses table, or both, may be empty
or nil.

11.9.1.10. captureinfo.private_table
Mode: Retrieve or assign.
A private Luavalue unique to thisfile.

Theprivat e_t abl e isafield you set/get with your own Luatable. Thisis provided so that aLua
script can save per-file reading/writing state, because multiple files can be opened and read at the
same time.

For example, if the user issued a reload-file command, or Lua called the r el oad() function, then
the current capture fileis still open while anew oneis being opened, and thus Wireshark will invoke
read_open() whilethe previous capture file has not caused r ead_cl ose() tobecaled; and if
ther ead_open() succeedsthenread_cl ose() will be called right after that for the previous
file, rather than the one just opened. Thus the Lua script can use thispri vat e_t abl e to store a
table of values specificto eachfile, by settingthispr i vat e_t abl einther ead_open() function,
which it can then later get back insideitsr ead() ,seek_read(),andread_cl ose() functions.

132

Wireshark’s Lua API
Reference Manud

11.9.2. CapturelnfoConst

A Capt ur el nf oConst object, passed into Lua as an argument to the Fi | eHandl| er callback
functionwri t e_open() .

This object represents capture file data and meta-data (data about the capture file) for the current
capture in Wireshark/Tshark.

This object’s fields are read-from when used by wri t e _open function callback. In other words,
when the Lua plugin’s FileHandler wri t e_open function is invoked, a Capt ur el nf oConst

object will be passed in as one of the arguments, and its fields should be read from by your Lua code
to get data about the capture that needs to be written.

Since: 1.11.3
11.9.2.1. captureinfoconst: _tostring()
Generates a string of debug info for the CapturelnfoConst

Returns

String of debug information.

11.9.2.2. captureinfoconst.type
Mode: Retrieve only.

Thefiletype.

11.9.2.3. captureinfoconst.snapshot_length
Mode: Retrieve only.
The maximum packet length that is actually recorded (vs. the original length of any given packet on-

the-wire). A value of 0 means the snapshot length is unknown or there is no one such length for the
wholefile.

11.9.2.4. captureinfoconst.encap
Mode: Retrieve only.
The packet encapsulation type for the wholefile.
See Wt ap_encaps in init.lua for available types. It is set to wt ap_encaps. PER_PACKET

if packets can have different types, in which case each Frame identifies its type, in
Franmel nf o. packet _encap.

11.9.2.5. captureinfoconst.comment
Mode: Retrieve or assign.

A comment for the whole capturefile, if thewt ap_pr esence_f | ags. COMVENTS was set in the
presence flags; nil if there is no comment.

11.9.2.6. captureinfoconst.hardware

Mode: Retrieve only.

133

Wireshark’s Lua API
Reference Manud

A string containing the description of the hardware used to create the capture, or nil if there is no
hardware string.

11.9.2.7. captureinfoconst.os
Mode: Retrieve only.

A string containing the name of the operating system used to create the capture, or nil if thereis no
0s string.

11.9.2.8. captureinfoconst.user_app

Mode: Retrieve only.

A string containing the name of the application used to create the capture, or nil if thereisno user_app
string.

11.9.2.9. captureinfoconst.hosts

Mode: Retrieve only.

A ip-to-hostname L uatable of two key-ed names: i pv4_addr esses andi pv6_addr esses. The
value of each of these names are themselves array tables, of key-ed tables, such that theinner table has
akey addr settotheraw 4-byte or 16-byte P addressLuastring and anane set to theresolved name.

For example, if the current capture has oneresolved IPv4 address of 1.2.3.4tof 00. com then getting
Capt ur el nf oConst . host s will get atable of:

{ ipvd_addresses = { { addr = "\01\02\03\ 04", nane = "foo.cont } }, ipv6_addresses ={ } }

Note that either the i pv4_addr esses or thei pv6_addr esses table, or both, may be empty,
however they will not be nil.

11.9.2.10. captureinfoconst.private_table
Mode: Retrieve or assign.
A private Luavalue unique to thisfile.

Theprivat e_t abl e isafield you set/get with your own Luatable. Thisis provided so that aLua
script can save per-file reading/writing state, because multiple files can be opened and read at the
same time.

For example, if two Lua scripts issue a Dunper : new _for_current () cal and the current
file happens to use your script's writer, then the Wireshark will invoke write_open()
while the previous capture file has not had write_cl ose() called. Thus the Lua script can
use this private_table to store a table of values specific to each file, by setting this
privat e_t abl e inthewrite open() function, which it can then |ater get back insideitswri t e() ,
andwite cl ose() functions.

11.9.3. File

A Fi | e object, passed into Luaasan argument by FileHandler callback functions(e.g.,r ead_open,
read, wite, etc.). This behaves similarly to the Luai o library’s fi | e object, returned when
caling i 0. open(), except in this case you cannot call fil e: cl ose(), fil e:open(), nor
file:setvbuf (), since Wireshark/tshark manages the opening and closing of files. You aso
cannot use the i o library itself on this object, i.e. you cannot doi o. read(file, 4).Instead,
use thisFi | e with the object-oriented style calling its methods, i.e. myfi | e: read(4) . (seelater
example)

134

Wireshark’s Lua API
Reference Manud

The purpose of this object is to hide the internal complexity of how Wireshark handles files, and
instead provide a Luainterface that is familiar, by mimicking thei o library. The reason true/raw i 0
files cannot be used is because Wireshark does many things under the hood, such as compressthefile,
or writeto st dout , or various other things based on configuration/commands.

When aFi | e object is passed in through reading-based callback functions, such asr ead_open(),
read(), andread_cl ose(), then the File object swri t e() and f | ush() functions are not
usable and will raise an error if used.

When aFi | e objectispassed in through writing-based callback functions, suchaswr i t e_open(),
wite(),andwite_close(),thentheFileobject'sread() and!i nes() functions are not
usable and will raise an error if used.

Note

aFi | e object should never be stored/saved beyond the scope of the callback function
itispassed in to.
For example:

function nyfil ehandl er.read_open(file, capture)
local position = file:seek()

- read 24 bytes
local line = file:read(24)

- do stuff

- it's not our file type, seek back (unnecessary but just to showit...)
file:seek("set", position)

- return fal se because it's not our file type

return fal se
end

Since: 1.11.3

11.9.3.1. file:read()

Reads from the File, similar to Lua'sfi | e: read() . See Lua5.x ref manual forfi |l e: read() .

11.9.3.2. file:seek()

SeeksintheFile, similarto Lua'sfi | e: seek().SeelLua5.x ref manual forfil e: seek().

The current file cursor position as a number.

11.9.3.3. file:lines()

Luaiterator function for retrieving ASCII File lines, similar to Lua’'sfi |l e: | i nes() . SeelLua5.x
ref manual forfil e:lines().

11.9.3.4. file:write()

Writesto the File, similar to Lua sfilexwrite(). See Lua 5.x ref manual for filexwrite().

11.9.3.5. file:__tostring()

Generates a string of debug info for the File object

135

Wireshark’s Lua API
Reference Manud

Returns

String of debug information.

11.9.3.6. file.compressed
Mode: Retrieve only.
Whether the File is compressed or not.

Seewt ap_encaps ininit.luafor available types. Set towt ap_encaps. PER_PACKET if packets
can have different types, then later set Franel nf o. encap for each packet during read()/
seek_read().

11.9.4. FileHandler

A FileHandler object, created by acall to FileHandler.new(argl, arg2, ...). The FileHandler object lets
you create afile-format reader, or writer, or both, by setting your own read_open/read or write_open/
write functions.

Since: 1.11.3

11.9.4.1. FileHandler.new(name, shortname, description, type)

Creates anew FileHandler

Arguments
name The name of thefiletype, for display purposesonly. E.g., "Wireshark - pcapng”
shortname The file type short name, used as a shortcut in various places. E.g., "pcapng".
Note: the name cannot already be in use.
description Descriptive text about thisfile format, for display purposes only
type The type of FileHandler, "r"/"w"/"rw" for reader/writer/both, include "m" for
magic, "s" for strong heuristic
Returns

The newly created FileHandler object

11.9.4.2. filehandler:___tostring()
Generates a string of debug info for the FileHandler
Returns

String of debug information.

11.9.4.3. filehandler.read _open
Mode: Assign only.
The Luafunction to be called when Wireshark opens afile for reading.
When later called by Wireshark, the Luafunction will be given:

1. AFil e object

136

Wireshark’s Lua API
Reference Manud

2. A Capt ur el nf o object

The purpose of the Lua function set to thisread_open field is to check if the file Wireshark is
opening is of its type, for example by checking for magic numbers or trying to parse records in the
file, etc. The more can be verified the better, because Wireshark tries all file readers until it finds one
that accepts the file, so accepting an incorrect file prevents other file readers from reading their files.

The called Lua function should return true if the file is its type (it accepts it), false if not. The Lua
function must also set the File offset position (using f i | e: seek()) to where it wants it to be for
itsfirstr ead() call.

11.9.4.4. filehandler.read

Mode: Assign only.

The Luafunction to be called when Wireshark wants to read a packet from thefile.

When later called by Wireshark, the Luafunction will be given:

1. AFil e object

2. A Capt ur el nf o object

3. A Franel nf o object

The purpose of the Lua function set to this r ead field is to read the next packet from the file,
and setting the parsed/read packet into the frame buffer using Framel nfo. data = foo or
Franel nf o: read_dat a() .

The called Luafunction should return the file offset/position number where the packet begins, or false

if it hit an error. The file offset will be saved by Wireshark and passed into the set seek_r ead()
Luafunction later.

11.9.4.5. filehandler.seek_read

Mode: Assign only.

The Luafunction to be called when Wireshark wants to read a packet from thefile at the given offset.
When later called by Wireshark, the Luafunction will be given:

1. AFil e object

2. A Capt ur el nf o object

3. A Franel nf o object

4. Thefile offset number previoudly set by ther ead() function call

11.9.4.6. filehandler.read_close
Mode: Assign only.
The Luafunction to be called when Wireshark wants to close the read file completely.
When later called by Wireshark, the Lua function will be given:
1. AFil e object

2. A Capt ur el nf o object

137

Wireshark’s Lua API
Reference Manud

It is not necessary to set thisfield to a Lua function - FileHandler can be registered without doing so
- itisavailablein case there is memory/state to clear in your script when the fileis closed.

11.9.4.7. filehandler.seq_read _close
Mode: Assign only.
The Luafunction to be called when Wireshark wants to close the sequentially-read file.
When later called by Wireshark, the Lua function will be given:
1. AFil e object
2. A Capt ur el nf o object
Itisnot necessary to set thisfield to aLuafunction - FileHandler can be registered without doing so - it

isavailablein casethereis memory/state to clear in your script when thefileis closed for the sequential
reading portion. After this point, there will be no more callstor ead(), only seek_read() .

11.9.4.8. filehandler.can_write_encap

Mode: Assign only.

The Luafunction to be called when Wireshark wants to write afile, by checking if thisfile writer can
handle the wtap packet encapsulation(s).

When later called by Wireshark, the Lua function will be given a Lua number, which matches one of
theencapsulationsinthe Luawt ap_encaps table. Thismight bethewt ap_encap. PER_PACKET
number, meaning the capture contains multiple encapsulation types, and the file reader should only
return true if it can handle multiple encap types in one file. The function will then be called again,
once for each encap typein the file, to make sure it can write each one.

If the Luafile writer can write the given type of encapsulation into a file, then it returns the boolean
true, elsefalse.

11.9.4.9. filehandler.write_open
Mode: Assign only.
The Lua function to be called when Wireshark opens afile for writing.
When later called by Wireshark, the Lua function will be given:
1. AFil e object
2. A Capt ur el nf oConst object
The purpose of the Lua function set to thiswr i t e_open field is similar to the read_open callback
function: to initialize things necessary for writing the capture to afile. For example, if the output file
format has afile header, then the file header should be written within this write_open function.

The called Lua function should return true on success, or falseif it hit an error.

Also make sure to set the FileHandl er.wite (and potentially
Fi | eHandl er. write_fini sh)functions before returning true from this function.

11.9.4.10. filehandler.write

Mode: Assign only.

138

Wireshark’s Lua API
Reference Manud

The Luafunction to be called when Wireshark wants to write a packet to the file.

When later called by Wireshark, the Lua function will be given:

1. AFil e object

2. A Capt ur el nf oConst object

3. A Franel nf oConst aobject of the current frame/packet to be written

The purpose of the Luafunction set to thiswr i t e field isto write the next packet to thefile.

The called Lua function should return true on success, or falseif it hit an error.

11.9.4.11. filehandler.write_finish

Mode: Assign only.

The Luafunction to be called when Wireshark wants to close the written file.
When later called by Wireshark, the Luafunction will be given:

1. AFil e object

2. A Capt ur el nf oConst object

It isnot necessary to set thisfield to aLuafunction - Fi | eHandl er can be registered without doing
so - itisavailablein case there is memory/state to clear in your script when thefileis closed.

11.9.4.12. filehandler.type

Mode: Retrieve only.

Theinternal filetype. Thisisautomatically set with anew number when the FileHandler isregistered.

11.9.4.13. filehandler.extensions
Mode: Retrieve or assign.
One or more file extensions that this file type usually uses.

For readers using heuristicsto determinefile type, Wireshark will try the readers of thefile’ sextension
first, before trying other readers. But ultimately Wireshark tries al file readers for any file extension,
until it finds one that accepts the file.

11.9.4.14. filehandler.writing_must_seek
Mode: Retrieve or assign.
Trueif the ability to seek is required when writing this file format, else false.

This will be checked by Wireshark when writing out to compressed file formats, because seeking is
not possible with compressed files. Usually afile writer only needs to be able to seek if it needsto go
back in the file to change something, such as ablock or file length value earlier in thefile.

11.9.4.15. filehandler.writes_name_resolution

Mode: Retrieve or assign.

Trueif the file format supports name resolution records, else false.

139

Wireshark’s Lua API
Reference Manud

11.9.4.16. filehandler.supported_comment_types
Mode: Retrieve or assign.

Set to the bit-wise OR’ ed number representing the type of comments the file writer supports writing,
based on the numbersinthewt ap_coment s table.

11.9.5. Framelnfo

A Framelnfo object, passed into Lua as an argument by FileHandler callback functions (e.g., r ead,
seek_read, etc.).

This object represents frame data and meta-data (data about the frame/packet) for a given r ead/
seek_r ead/ write'sframe.

This object’s fields are written-to/set when used by read function callbacks, and read-from/get when
used by file write function callbacks. In other words, when the Lua plugin’s FileHandler r ead/
seek_r ead/etc. functions areinvoked, a Framel nfo object will be passed in as one of the arguments,
and itsfields should be written-to/set based on the frame information read from the file; whereas when
the Luaplugin’'sFi | eHandl er. wri t e() functionisinvoked, the Fr amel nf o object passed in
should have its fields read-from/get, to write that frame information to the file.

Since: 1.11.3
11.9.5.1. frameinfo:__tostring()
Generates a string of debug info for the Framelnfo
Returns

String of debug information.

11.9.5.2. frameinfo:read_data(file, length)

Tells Wireshark to read directly from given file into frame data buffer, for length bytes. Returns true
if succeeded, elsefalse.

Arguments
file TheFile object userdata, provided by Wireshark previously in areading-based callback.
length The number of bytes to read from the file at the current cursor position.

Returns

Trueif succeeded, else returns false along with the error number and string error description.
A Luastring of the frame buffer’s data.
11.9.5.3. frameinfo.time

Mode: Retrieve or assign.

The packet timestamp as an NSTime object.

Note

Set the Fi | eHandl er.ti me_precision to the appropriate
wtap_file_tsprec vaueaswell.

140

Wireshark’s Lua API
Reference Manud

11.9.5.4. frameinfo.data

Mode: Retrieve or assign.
The data buffer containing the packet.

Note

This cannot be cleared once set.

11.9.5.5. frameinfo.rec_type
Mode: Retrieve or assign.
The record type of the packet frame

Seewt ap_rec_typesininit.| uaforvaues.

11.9.5.6. frameinfo.flags

Mode: Retrieve or assign.

The presence flags of the packet frame.

Seewt ap_presence_flags ininit. | ua for bit values.
11.9.5.7. frameinfo.captured_length

Mode: Retrieve or assign.

The captured packet length, and thus the length of the buffer passed to the Fr anel nf 0. dat a field.
11.9.5.8. frameinfo.original _length

Mode: Retrieve or assign.

The on-the-wire packet length, which may be longer than the capt ur ed_| engt h.
11.9.5.9. frameinfo.encap

Mode: Retrieve or assign.

The packet encapsulation type for the frame/packet, if the file supports per-packet types. See

wt ap_encaps ininit. | ua for possible packet encapsulation types to use as the value for this
field.

11.9.5.10. frameinfo.comment

Mode: Retrieve or assign.

A string comment for the packet, if the wt ap_presence_fl ags. COUENTS was set in the
presence flags; nil if there is no comment.

11.9.6. FramelnfoConst

A constant Framelnfo object, passed into Lua as an argument by the FileHandler write callback
function. This has similar attributes/properties as Framel nfo, but the fields can only be read from, not
written to.

141

Wireshark’s Lua API
Reference Manud

Since: 1.11.3

11.9.6.1. frameinfoconst: _tostring()
Generates a string of debug info for the Framelnfo
Returns
String of debug information.
11.9.6.2. frameinfoconst:write_data(file, [length])

Tells Wireshark to write directly to given file from the frame data buffer, for length bytes. Returns
true if succeeded, else false.

Arguments
file The File object userdata, provided by Wireshark previously in a
writing-based callback.
length (optional) The number of bytes to write to the file at the current cursor position,
or al if not supplied.
Returns

True if succeeded, else returns false along with the error number and string error description.

11.9.6.3. frameinfoconst.time

Mode: Retrieve only.

The packet timestamp as an NSTime object.
11.9.6.4. frameinfoconst.data

Mode: Retrieve only.

The data buffer containing the packet.
11.9.6.5. frameinfoconst.rec_type

Mode: Retrieve only.

The record type of the packet frame - scewt ap_pr esence_fl ags ini ni t. | ua for values.
11.9.6.6. frameinfoconst.flags

Mode: Retrieve only.

The presence flags of the packet frame - seewt ap_presence_fl ags ini ni t. | ua for bits.
11.9.6.7. frameinfoconst.captured_length

Mode: Retrieve only.

The captured packet length, and thus the length of the buffer in the FramelnfoConst.data field.
11.9.6.8. frameinfoconst.original_length

Mode: Retrieve only.

142

Wireshark’s Lua API
Reference Manud

The on-the-wire packet length, which may be longer than thecapt ur ed_| engt h.

11.9.6.9. frameinfoconst.encap
Mode: Retrieve only.
The packet encapsulation type, if the file supports per-packet types.

Seewt ap_encaps ininit. | ua for possible packet encapsulation types to use as the value for
thisfield.

11.9.6.10. frameinfoconst.comment

Mode: Retrieve only.

A comment for the packet; nil if there is none.

11.9.7. Global Functions

11.9.7.1. register_filehandler(filehandler)
Register the FileHandler into Wireshark/tshark, so they can read/write this new format. All functions
and settings must be complete before calling this registration function. This function cannot be called
inside the reading/writing callback functions.

Arguments
filehandler The FileHandler object to be registered

Returns

the new type number for this file reader/write

11.9.7.2. deregister_filehandler(filehandler)

De-register the FileHandler from Wireshark/tshark, so it no longer gets used for reading/writing/
display. This function cannot be called inside the reading/writing callback functions.

Arguments

filehandler The FileHandler object to be de-registered
11.10. Directory handling functions
11.10.1. Dir

A Directory object, as well as associated functions.

11.10.1.1. Dir.make(name)
Creates adirectory.

The created directory is set for permission mode 0755 (octal), meaning it is read+writet+execute by
owner, but only read+execute by group and others.

I Fthe directory was created successfully, abooleant r ue isreturned. If the directory cannot be made
becauseit already exists, f al se isreturned. If thedirectory cannot be made because an error occurred,
ni | isreturned.

143

Wireshark’s Lua API

Reference Manual
Since: 1.11.3
Arguments
name The name of the directory, possibly including path.

Returns

Booleant r ue on success, f al se if aready exists, ni | on error.

11.10.1.2. Dir.exists(name)

Returnstrue if the given directory name exists.

If the directory exists, abooleant r ue isreturned. If the path isafileinstead, f al se isreturned. If
the path does not exist or an error occurred, ni | isreturned.

Since: 1.11.3
Arguments
name The name of the directory, possibly including path.

Returns

Booleant r ue if the directory exists, f al se if it'safile, ni | on error/not-exist.

11.10.1.3. Dir.remove(name)
Removes an empty directory.

If the directory was removed successfully, a boolean t r ue is returned. If the directory cannot be
removed because it does not exist, f al se isreturned. If the directory cannot be removed because an
error occurred, ni | isreturned.

This function only removes empty directories. To remove a directory regardless, use
Dir.remove_all ().

Since: 1.11.3
Arguments
name The name of the directory, possibly including path.

Returns

Booleant r ue on success, f al se if doesnot exist, ni | on error.

11.10.1.4. Dir.remove_all(name)
Removes an empty or non-empty directory.

If the directory was removed successfully, a boolean t r ue is returned. If the directory cannot be
removed because it does not exist, f al se isreturned. If the directory cannot be removed because an
error occurred, ni | isreturned.

Since: 1.11.3
Arguments
name The name of the directory, possibly including path.

144

Wireshark’s Lua API
Reference Manud

Returns
Booleant r ue on success, f al se if doesnot exist, ni | on error.
11.10.1.5. Dir.open(pathname, [extension])

Opens adirectory and returnsaDi r object representing the files in the directory.

for filename in Dir.open(path) do ... end
Arguments
pathname The pathname of the directory.
extension (optional) If given, only files with this extension will be returned.

Returns

theDi r object.

11.10.1.6. Dir.personal_config_path([filename])
Gets the personal configuration directory path, with filename if supplied.
Since: 1.11.3

Arguments
filename (optional) A filename.

Returns
The full pathname for afile in the personal configuration directory.

11.10.1.7. Dir.global_config_path([filename])
Getsthe global configuration directory path, with filename if supplied.
Since: 1.11.3

Arguments
filename (optional) A filename

Returns

The full pathname for afile in wireshark’s configuration directory.
11.10.1.8. Dir.personal_plugins_path()

Gets the personal plugins directory path.
Since: 1.11.3

Returns

The pathname for the personal plugins directory.

11.10.1.9. Dir.global_plugins_path()

Gets the global plugins directory path.

145

Wireshark’s Lua API
Reference Manud

Since: 1.11.3
Returns

The pathname for the global plugins directory.

11.10.1.10. dir:__call()

At every invocation will return one file (nil when done).

11.10.1.11. dir:close()

Closes the directory.

11.11. Utility Functions

11.11.1. Global Functions
11.11.1.1. get_version()

Gets a string of the Wireshark version.
Returns

version string

11.11.1.2. set_plugin_info(table)

Set a Luatable with meta-data about the plugin, such as version.

The passed-in Luatable entries need to be keyed/indexed by the following:

» "version" with a string value identifying the plugin version (required)

* "description" with a string value describing the plugin (optional)

 "author" with a string value of the author’s name(s) (optional)

» "repository" with astring value of a URL to arepository (optional)

Not all of the above key entries need to be in the table. The version entry is required, however. The
others are not currently used for anything, but might be in the future and thus using them might be
useful. Table entries keyed by other strings are ignored, and do not cause an error.

Example:
local ny_info = {
version = "1.0.1",
aut hor = "Jane Doe",

repository = "https://github. conl octocat/ Spoon-Knife"

}

set _plugi n_i nfo(ny_info)

Since: 1.99.8
Arguments
table The Luatable of information.

146

Wireshark’s Lua API
Reference Manud

11.11.1.3. format_date(timestamp)

Formats an absolute timestamp into a human readable date.
Arguments

timestamp A timestamp value to convert.
Returns

A string with the formated date

11.11.1.4. format_time(timestamp)

Formats arelative timestamp in a human readable form.
Arguments

timestamp A timestamp value to convert.
Returns

A string with the formated time

11.11.1.5. report_failure(text)
Reports afailure to the user.
Arguments

text M essage text to report.

11.11.1.6. critical(...)
Will add alog entry with critical severity.
Arguments

Objects to be printed

11.11.1.7. warn(...)
Will add alog entry with warn severity.
Arguments

Objects to be printed

11.11.1.8. message(...)
Will add alog entry with message severity.
Arguments

Objects to be printed

11.11.1.9. info(...)

Will add alog entry with info severity.

147

Wireshark’s Lua API
Reference Manud

Arguments

Objects to be printed

11.11.1.10. debug(...)
Will add alog entry with debug severity.
Arguments

Objects to be printed

11.11.1.11. loadfile(filename)

Lua s loadfile() has been modified so that if afile does not exist in the current directory it will look
for it in wireshark’s user and system directories.

Arguments

filename Name of the file to be |oaded.

11.11.1.12. dofile(filename)

Lua s dofile() has been modified so that if afile does not exist in the current directory it will look for
it in wireshark’ s user and system directories.

Arguments
filename Name of the fileto be run.
11.11.1.13. register_stat_cmd_arg(argument, [action])

Register afunction to handle a- z option

Arguments
argument Argument
action (optional) Action

11.12. Handling 64-bit Integers

L ua uses one single humber representation which can be chosen at compile time and since it is often
set to |EEE 754 double precision floating point, one cannot store a 64 bit integer with full precision.

For details, see https://wiki.wireshark.org/L uaAPl/Int64.

11.12.1. Int64

I nt 64 represents a 64 bit signed integer.

For details, see https.//wiki.wireshark.org/L uaAPl/Int64.

11.12.1.1. Int64.decode(string, [endian])

Decodes an 8-byte Lua string, using given endianness, into anew | nt 64 object.

Since: 1.11.3

148

https://wiki.wireshark.org/LuaAPI/Int64:
https://wiki.wireshark.org/LuaAPI/Int64:

Wireshark’s Lua API

Reference Manual
Arguments
string The Lua string containing a binary 64-bit integer.
endian (optional) If set to true then little-endian is used, if false then big-endian; if
missing/nil, native host endian.
Returns

Thel nt 64 object created, or nil on failure.

11.12.1.2. Int64.new([value], [highvalue])

Createsal nt 64 Object.

Since: 1.11.3
Arguments
value (optional) A number, Ul nt 64, | nt 64, or string of ASCII digits to assign
the value of the new | nt 64 (default=0).
highvalue (optional) If thisis a number and the first argument was a number, then the
first will be treated as a lower 32-hits, and this is the high-order
32 bit number.

Returns
Thenew | nt 64 object.

11.12.1.3. Int64.max()

Gets the max possible value.

Since: 1.11.3
Returns
Thenew | nt 64 object of the max value.

11.12.1.4. Int64.min()

Gets the min possible value.

Since: 1.11.3
Returns
Thenew | nt 64 object of the min value.

11.12.1.5. Int64.fromhex(hex)

Createsan | nt 64 object from the given hex string.

Since: 1.11.3
Arguments
hex The hex-ascii Lua string.

149

Wireshark’s Lua API
Reference Manud

Returns

Thenew | nt 64 object.

11.12.1.6. int64.encode([endian])

Encodesthe | nt 64 number into an 8-byte Lua string, using given endianness.

Since: 1.11.3
Arguments
endian (optional) If set to true then little-endian is used, if false then big-endian; if
missing/nil, native host endian.
Returns

The Luastring.

11.12.1.7.int64:__ call()

Createsal nt 64 Object.

Since: 1.11.3
Returns

Thenew | nt 64 object.

11.12.1.8. int64:tonumber()

Returns a Lua number of the | nt 64 value - this may |ose precision.

Since: 1.11.3

Returns

The Luanumber.

11.12.1.9. int64:tohex([numbytes])

Returns a hex string of the | nt 64 value.

Since: 1.11.3
Arguments
numbytes (optional) The number of hex-charg/nibbles to generate, negative means
uppercase (default=16).
Returns
The string hex.

11.12.1.10. int64:higher()

Returns a Lua number of the higher 32-bits of the | nt 64 value. (negative | nt 64 will return a
negative Lua number).

150

Wireshark’s Lua API
Reference Manud

Since: 1.11.3
Returns

The Lua number.

11.12.1.11. int64:lower()

Returns a Lua number of the lower 32-bits of the | nt 64 value. (always positive).
Since: 1.11.3
Returns

The Lua number.

11.12.1.12. int64:__tostring()
Convertsthe |l nt 64 into astring of decimal digits.
Returns

The Luastring.

11.12.1.13. int64:__unm()
Returns the negative of the | nt 64, inanew | nt 64.
Since: 1.11.3

Returns

Thenew | nt 64.

11.12.1.14. int64:__add()

Addstwo | nt 64 together and returns a new one (this may wrap the value).

Since: 1.11.3

11.12.1.15. int64:___sub()

Subtractstwo | nt 64 and returns anew one (this may wrap the value).

Since: 1.11.3

11.12.1.16. int64:__mul()

Multipliestwo | nt 64 and returns anew one (this may truncate the value).

Since: 1.11.3

11.12.1.17. int64:__div()

Divides two | nt 64 and returns a new one (integer divide, no remainder). Trying to divide by zero
resultsin aLuaerror.

Since: 1.11.3

151

Wireshark’s Lua API
Reference Manud

Returns

Thel nt 64 object.

11.12.1.18. int64:__mod()

Divides two | nt 64 and returns a new one of the remainder. Trying to modulo by zero resultsin a
Luaerror.

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.19. int64:__pow()

Thefirst | nt 64 istaken to the power of the second | nt 64, returning a new one (this may truncate
the value).

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.20. int64:__eq()

Returnstrueif both | nt 64 areequal.

Since: 1.11.3

11.12.1.21. int64:__It()

Returnstrueif first | nt 64 < second.

Since: 1.11.3

11.12.1.22. int64:__le()

Returnstrueif first I nt 64 second.

Since: 1.11.3

11.12.1.23. int64:bnot()

Returnsal nt 64 of the bitwise not operation.
Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.24. int64:band ()

Returns a | nt 64 of the bitwise and operation, with the given number/I nt 64/Ul nt 64. Note that
multiple arguments are allowed.

152

Wireshark’s Lua API
Reference Manud

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.25. int64:bor()

Returns a | nt 64 of the bitwise or operation, with the given number/I nt 64/Ul nt 64. Note that
multiple arguments are allowed.

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.26. int64:bxor()

Returns a | nt 64 of the bitwise xor operation, with the given number/l nt 64/Ul nt 64. Note that
multiple arguments are allowed.

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.1.27. int64:Ishift(numbits)

Returnsal nt 64 of the bitwise logical |eft-shift operation, by the given number of bits.

Since: 1.11.3
Arguments

numbits The number of bits to left-shift by.
Returns

Thel nt 64 object.

11.12.1.28. int64:rshift(humbits)

Returnsal nt 64 of the bitwise logical right-shift operation, by the given number of bits.

Since: 1.11.3
Arguments

numbits The number of bits to right-shift by.
Returns

Thel nt 64 object.

11.12.1.29. int64:arshift(numbits)

Returnsal nt 64 of the bitwise arithmetic right-shift operation, by the given number of bits.

153

Wireshark’s Lua API

Reference Manual
Since: 1.11.3
Arguments
numbits The number of bits to right-shift by.

Returns

Thel nt 64 object.

11.12.1.30. int64:rol(numbits)

Returnsal nt 64 of the bitwise left rotation operation, by the given number of bits (up to 63).
Since: 1.11.3

Arguments
numbits The number of bitsto roll left by.

Returns

Thel nt 64 object.

11.12.1.31. int64:ror(numbits)

Returnsal nt 64 of the bitwise right rotation operation, by the given number of bits (up to 63).
Since: 1.11.3

Arguments
numbits The number of hitsto roll right by.

Returns

Thel nt 64 object.

11.12.1.32. int64:bswap()

Returns a | nt 64 of the bytes swapped. This can be used to convert little-endian 64-bit numbers to
big-endian 64 bit numbers or vice versa.

Since: 1.11.3
Returns

Thel nt 64 object.

11.12.2. UInt64

Ul nt 64 represents a 64 bit unsigned integer, similar to | nt 64.

For details, see: https://wiki.wireshark.org/LuaAPl/Int64.

11.12.2.1. UInt64.decode(string, [endian])

Decodes an 8-byte Lua binary string, using given endianness, into anew Ul nt 64 object.

Since: 1.11.3

154

https://wiki.wireshark.org/LuaAPI/Int64:

Wireshark’s Lua API
Reference Manud

Arguments
string

endian (optional)

Returns

The Lua string containing a binary 64-bit integer.

If set to true then little-endian is used, if false then big-endian; if
missing/nil, native host endian.

The Ul nt 64 object created, or nil on failure.

11.12.2.2. UInt64.new([value], [highvalue])

Createsa Ul nt 64 Object.

Since: 1.11.3

Arguments

value (optional)

highvalue (optional)

Returns

The new Ul nt 64 object.

11.12.2.3. UInt64.max()

Gets the max possible value.

Since: 1.11.3
Returns

The max value.

11.12.2.4. UInt64.min()

A number, Ul nt 64,1 nt 64, or string of digitsto assign thevalue
of the new Ul nt 64 (default=0).

If thisis a number and the first argument was a number, then the
first will be treated as a lower 32-hits, and this is the high-order
32-bit number.

Getsthe min possible value (i.e., 0).

Since: 1.11.3
Returns

The min value.

11.12.2.5. UInt64.fromhex(hex)

Createsa Ul nt 64 object from the given hex string.

Since: 1.11.3
Arguments
hex The hex-ascii Lua string.

155

Wireshark’s Lua API
Reference Manud

Returns

The new Ul nt 64 object.

11.12.2.6. uint64:encode([endian])

Encodes the Ul nt 64 number into an 8-byte Lua binary string, using given endianness.

Since: 1.11.3
Arguments
endian (optional) If set to true then little-endian is used, if false then big-endian; if
missing/nil, native host endian.
Returns

The Luabinary string.

11.12.2.7. uint64:__call()

Createsa Ul nt 64 Object.

Since: 1.11.3
Returns

The new Ul nt 64 object.

11.12.2.8. uint64:tonumber()

Returns a Lua number of the Ul nt 64 value - this may lose precision.
Since: 1.11.3
Returns

The Lua number.

11.12.2.9. uint64:__tostring()
Convertsthe Ul nt 64 into astring.
Returns

The Luastring.

11.12.2.10. uint64:tohex([numbytes])

Returns a hex string of the Ul nt 64 value.
Since: 1.11.3
Arguments

numbytes (optional) The number of hex-charg/nibbles to generate, negative means
uppercase (default=16).

156

Wireshark’s Lua API
Reference Manud

Returns

The string hex.
11.12.2.11. uint64:higher()

Returns a Lua number of the higher 32-bits of the Ul nt 64 value.
Returns

The Lua number.

11.12.2.12. uint64:lower()
Returns a Lua number of the lower 32-bits of the Ul nt 64 vaue.
Returns

The Lua number.

11.12.2.13. uint64:_unm(()
Returnsthe Ul nt 64, inanew Ul nt 64, since unsigned integers can’t be negated.
Since: 1.11.3

Returns

The Ul nt 64 object.

11.12.2.14. uint64.__add()

Addstwo Ul nt 64 together and returns a new one (this may wrap the value).

Since: 1.11.3

11.12.2.15. uint64:__sub()

Subtracts two Ul nt 64 and returns a new one (this may wrap the value).

Since: 1.11.3

11.12.2.16. uint64:__mul()

Multipliestwo Ul nt 64 and returns a new one (this may truncate the value).

Since: 1.11.3

11.12.2.17. uint64:__div()

Divides two Ul nt 64 and returns a new one (integer divide, no remainder). Trying to divide by zero
resultsin aLuaerror.

Since: 1.11.3
Returns

The Ul nt 64 result.

157

Wireshark’s Lua API
Reference Manud

11.12.2.18. uint64: __mod()

Divides two Ul nt 64 and returns a new one of the remainder. Trying to modulo by zero results in
alLuaerror.

Since: 1.11.3
Returns

The Ul nt 64 result.

11.12.2.19. uint64:__pow()

The first Ul nt 64 is taken to the power of the second Ul nt 64/number, returning a new one (this
may truncate the value).

Since: 1.11.3
Returns

The Ul nt 64 object.

11.12.2.20. uint64:___eq()

Returnstrueif both Ul nt 64 are equal.

Since: 1.11.3

11.12.2.21. uint64:__It()

Returns true if first Ul nt 64 < second.

Since: 1.11.3

11.12.2.22. uint64:__le()

Returnstrueif first Ul nt 64 ; second.

Since: 1.11.3

11.12.2.23. uint64:bnot()
Returnsa Ul nt 64 of the bitwise not operation.
Since: 1.11.3

Returns

The Ul nt 64 object.

11.12.2.24. uint64:band()

Returns a Ul nt 64 of the bitwise and operation, with the given number/I nt 64/Ul nt 64. Note that
multiple arguments are allowed.

Since: 1.11.3
Returns

The Ul nt 64 object.

158

Wireshark’s Lua API
Reference Manud

11.12.2.25. uint64:bor()

Returns a Ul nt 64 of the bitwise or operation, with the given number/l nt 64/Ul nt 64. Note that
multiple arguments are allowed.

Since: 1.11.3
Returns

The Ul nt 64 object.

11.12.2.26. uint64:bxor()

Returns a Ul nt 64 of the bitwise xor operation, with the given number/l nt 64/Ul nt 64. Note that
multiple arguments are allowed.

Since: 1.11.3
Returns

The Ul nt 64 object.

11.12.2.27. uint64:Ishift(numbits)

Returnsa Ul nt 64 of the bitwise logical left-shift operation, by the given number of bits.
Since: 1.11.3

Arguments
numbits The number of bits to left-shift by.

Returns

The Ul nt 64 object.

11.12.2.28. uint64:rshift(hnumbits)

Returnsa Ul nt 64 of the bitwise logical right-shift operation, by the given number of bits.
Since: 1.11.3

Arguments
numbits The number of bits to right-shift by.

Returns

The Ul nt 64 object.

11.12.2.29. uint64:arshift(numbits)

Returnsa Ul nt 64 of the bitwise arithmetic right-shift operation, by the given number of bits.

Since: 1.11.3

Arguments

numbits The number of hits to right-shift by.

159

Wireshark’s Lua API
Reference Manud

Returns

The Ul nt 64 object.

11.12.2.30. uint64:rol(numbits)
Returnsa Ul nt 64 of the bitwise left rotation operation, by the given number of bits (up to 63).
Since: 1.11.3

Arguments
numbits The number of bitsto roll left by.

Returns

The Ul nt 64 object.

11.12.2.31. uint64:.ror(numbits)
Returnsa Ul nt 64 of the bitwise right rotation operation, by the given number of bits (up to 63).
Since: 1.11.3

Arguments
numbits The number of bitsto roll right by.

Returns

The Ul nt 64 object.

11.12.2.32. uint64:bswap()

Returnsa Ul nt 64 of the bytes swapped. This can be used to convert little-endian 64-bit numbers to
big-endian 64 bit numbers or vice versa.

Since: 1.11.3
Returns

The Ul nt 64 object.

11.13. Binary encode/decode support

The Struct class offers basic facilities to convert Luavalues to and from C-style structsin binary Lua
strings. Thisisbased on Roberto lerusalimschy’ sLuastruct library found in http://www.inf.puc-rio.br/
~roberto/struct/, with some minor modifications as follows:

» Added support for | nt 64/Ul nt 64 being packed/unpacked, using e/E.

» Can handlelong long integers (i8 / 18); though they’ re converted to doubles.

» Caninsert/specify padding anywhere in astruct. (X eg. when a string is following a union).
 Can report current offset in both pack and unpack (=).

» Can mask out return values when you only want to cal culate sizes or unmarshal pascal-style strings
using(&) .

160

http://www.inf.puc-rio.br/~roberto/struct/:
http://www.inf.puc-rio.br/~roberto/struct/:

Wireshark’s Lua API
Reference Manud

All but the first of those changes are based on an email from Flemming Madsen, on the lua-users
mailing list, which can be found here.

Themainfunctionsare St r uct . pack, which packs multiple Luavaluesinto astruct-like Luabinary
string; and St r uct . unpack, which unpacks multiple Luavaluesfrom agiven struct-like Luabinary
string. There are some additional helper functions available as well.

All functions in the Struct library are called as static member functions, not object methods, so they
areinvoked as " Struct.pack(...)" instead of "object:pack(...)".

The fist argument to several of the St r uct functionsis aformat string, which describes the layout
of the structure. The format string is a sequence of conversion elements, which respect the current
endianness and the current alignment requirements. Initially, the current endianness is the machine's
native endianness and the current alignment requirement is 1 (meaning no alignment at al). You can
change these settings with appropriate directives in the format string.

The supported elementsin the format string are as follows:
» '’ (empty space) ignored.

« ‘I n’ flag to set the current alignment requirement to n (necessarily apower of 2); an absent n means
the machine' s native alignment.

» ‘>’ flag to set mode to big endian (i.e., network-order).

» ‘< flag to set modeto little endian.

e ‘X’ apadding zero byte with no corresponding Lua value.

* ‘b’ asigned char.

* ‘B’ anunsigned char.

» ‘h’ asigned short (native size).

* ‘H anunsigned short (native size).

asigned long (native size).

» ‘L’ anunsigned long (native size).

e ‘T’ asize t (native size).

* ‘i n” asigned integer with n bytes. An absent n means the native size of anint.
o ‘In’ like‘i n" but unsigned.

» ‘e’ signed 8-byte Integer (64-bits, long long), to/from al nt 64 object.

» 'E’ unsigned 8-byte Integer (64-bits, long long), to/from aUl nt 64 object.
o ‘f’ afloat (native size).

e ‘d’ adouble (native size).

* ‘s’ azero-terminated string.

» ‘cn’ asequence of exactly n chars corresponding to asingle Luastring. An absent n means 1. When
packing, the given string must have at least n characters (extra characters are discarded).

« ‘cO’ thisislike ‘cn’, except that the n is given by other means: When packing, n is the length of
the given string; when unpacking, n is the value of the previous unpacked value (which must be a
number). In that case, this previous value is not returned.

161

http://lua-users.org/lists/lua-l/2009-10/msg00572.html:

Wireshark’s Lua API
Reference Manud

e ‘XN’ pad to n number of bytes, default 1.
o ‘Xn’ pad to n alignment, default MAXALIGN.
e ‘(’ tostop assigning items, and ‘) * start assigning (padding when packing).

» ‘=" toreturn the current position / offset.

Note

Usingi,l,h,H1,L, f,and T is strongly discouraged, as those sizes are system-
dependent. Use the explicitly sized variantsinstead, such asi 4 or E.

Note
Unpacking of i/l is done to a Lua number, a double-precision floating point, so

unpacking a64-bit field (i 8/1 8) will lose precision. Use e/E to unpack into aWireshark
| nt 64/Ul nt 64 object instead.

Since: 1.11.3

11.13.1. Struct

11.13.1.1. Struct.pack(format, value)

Returns a string containing the values argl, arg2, etc. packed/encoded according to the format string.

Arguments

format The format string

value One or more Lua value(s) to encode, based on the given format.
Returns

The packed binary Lua string, plus any positions due to = being used in format.

11.13.1.2. Struct.unpack(format, struct, [begin])

Unpacks/decodes multiple Lua values from a given struct-like binary Lua string. The number of
returned val ues depends on the format given, plus an additional value of the position whereit stopped
reading is returned.

Arguments

format The format string

struct The binary Lua string to unpack

begin (optional) The position to begin reading from (default=1)
Returns

One or more values based on format, plus the position it stopped unpacking.

11.13.1.3. Struct.size(format)

Returns the length of a binary string that would be consumed/handled by the given format string.

162

Wireshark’s Lua API

Reference Manual
Arguments
format The format string
Returns
The size number

11.13.1.4. Struct.values(format)
Returns the number of Lua values contained in the given format string. This will be the number of
returned values from a call to Struct.unpack() not including the extra return value of offset position.
(i.e., Struct.values() does not count that extrareturn value) Thiswill also be the number of arguments
Struct.pack() expects, not including the format string argument.

Arguments
format The format string

Returns

The number of values

11.13.1.5. Struct.tohex(bytestring, [lowercase], [separator])

Converts the passed-in binary string to a hex-ascii string.

Arguments
bytestring A Luastring consisting of binary bytes
lowercase (optional) True to use lower-case hex characters (default=fal se).
separator (optional) A string separator to insert between hex bytes (default=nil).
Returns

The Lua hex-ascii string

11.13.1.6. Struct.fromhex(hexbytes, [separator])

Converts the passed-in hex-ascii string to abinary string.

Arguments
hexbytes A string consisting of hexadecimal bytes like "00 B1 A2" or
"1a2b3cAd"
separator (optional) A string separator between hex bytes/words (default="").
Returns

The Luabinary string

11.14. GLib Regular Expressions

Luahasits own native pattern syntax in the string library, but sometimes areal regex engine is more
useful. Wireshark comeswith GLib' s Regex implementation, which itself isbased on Perl Compatible

163

Wireshark’s Lua API
Reference Manud

Regular Expressions (PCRE). This engine is exposed into Wireshark’s L ua engine through the well-
known Lrexlib library, following the same syntax and semantics asthe Lrexlib PCRE implementation,
with afew differences as follows:

» Thereisno support for using custom locale/chartables

dfa_exec() doesn’t take ovecsize nor wscount arguments
» dfa_exec() returns boolean true for partial match, without subcapture info
» Named subgroups do not return name-keyed entries in the return table (i.e., in match/tfind/exec)

» The flags() function still works, returning all flags, but two new functions compile_flags() and
match_flags() return just their respective flags, since GLib has a different and smaller set of such
flags, for regex compile vs. match functions

» Using someassertionsand POSI X character classesagainst stringswith non-ASCI1 charactersmight
match high-order characters, because glib always setsPCRE_UCP evenif G_REGEX_RAW is set.
For example, [:alpha;] matches certain non-ASCII bytes. The following assertions have this issue:
\b, \B, \s, \S \w, \W. The following character classes have thisissue: [:alpha], [:anum:], [:lower:],
[:upper:], [:space], [:word:], and [:graph:].

» Thecompileflag G_REGEX_RAW isaways set/used, evenif you didn’t specify it. Thisisbecause
GLib runs PCRE in UTF-8 mode by default, whereas Lua strings are not UTF-aware.

Since: 1.11.3

This page is based on the full documentation for Lrexlib at http://rrthomas.github.io/lrexlib/
manual.html

The GLib Regular expression syntax (which is essentially PCRE syntax) can be found at https://
developer.gnome.org/glib/2.38/glib-regex-syntax.html

11.14.1. GRegex

GLib Regular Expressions based on PCRE.

Since: 1.11.3

11.14.1.1. Notes

All functionsthat take aregular expression pattern as an argument will generate an error if that pattern
isfound invalid by the regex library.

All functions that take a string-type regex argument accept a compiled regex too. In this case, the
compile flags argument isignored (should be either supplied as nils or omitted).

The capture flag argument cf may also be supplied as a string, whose characters stand for compilation
flags. Combinations of the following characters (case sensitive) are supported:

* i =G_REGEX_CASELESS - Lettersin the pattern match both upper- and lowercase letters. This
option can be changed within a pattern by a*“(?)” option setting.

« m=G_REGEX_MULTILINE - By default, GRegex treats the strings as consisting of asingleline
of characters (evenif it actually contains newlines). The“ start of line” metacharacter (") matches
only at the start of the string, while the “end of line” metacharacter (“$") matches only at the end of
the string, or beforeaterminating newline (unlessG_ REGEX_ DOLLAR _ENDONLY isset). When
G_REGEX_MULTILINE isset, the “start of line” and “end of lin€” constructs match immediately
following or immediately before any newline in the string, respectively, aswell as at the very start
and end. This can be changed within a pattern by a“(?m)” option setting.

164

http://rrthomas.github.io/lrexlib/manual.html
http://rrthomas.github.io/lrexlib/manual.html
https://developer.gnome.org/glib/2.38/glib-regex-syntax.html
https://developer.gnome.org/glib/2.38/glib-regex-syntax.html

Wireshark’s Lua API
Reference Manud

 s=G_REGEX_DOTALL - A dot metacharater (“.") inthe pattern matches all characters, including
newlines. Without it, newlines are excluded. This option can be changed within a pattern by a ("?
s") option setting.

» Xx=G_REGEX_EXTENDED - Whitespace data charactersin the pattern are totally ignored except
when escaped or inside a character class. Whitespace does not include the VT character (code 11).
In addition, characters between an unescaped “#’ outside a character class and the next newline
character, inclusive, arealsoignored. This can be changed within apattern by a“(?x)” option setting.

* U = G_REGEX_UNGREEDY - Inverts the “greediness’ of the quantifiers so that they are not
greedy by default, but become greedy if followed by “?”. It can also be set by a“(?U)” option setting
within the pattern.

11.14.1.2. GRegex.new(pattern)

Compiles regular expression pattern into aregular expression object whose internal representation is
corresponding to the library used. The returned result then can be used by the methods, e.g. match,
exec, etc. Regular expression objects are automatically garbage collected.

Since: 1.11.3
Arguments
pattern A Perl-compatible regular expression pattern string

Returns

The compiled regular expression (a userdata object)

Errors

» A malformed pattern generates a L ua error

11.14.1.3. GRegex.flags([table])

Returns a table containing the numeric values of the constants defined by the regex library, with the
keys being the (string) names of the constants. If the table argument is supplied then it is used as the
output table, otherwise a new table is created. The constants contained in the returned table can then
be used in most functions and methods where compilation flags or execution flags can be specified.
They can also be used for comparing with return codes of some functions and methodsfor determining
the reason of failure.

Since: 1.11.3
Arguments

table (optional) A tablefor placing resultsinto
Returns

A tablefilled with the results.

11.14.1.4. GRegex.compile_flags([table])

Returns atable containing the numeric values of the constants defined by the regex library for compile
flags, with the keys being the (string) names of the constants. If the table argument is supplied then it
is used as the output table, otherwise anew tableis created.

Since: 1.11.3

165

Wireshark’s Lua API
Reference Manud

Arguments
table (optional) A tablefor placing resultsinto
Returns

A tablefilled with the results.

11.14.1.5. GRegex.match_flags([table])

Returns a table containing the numeric values of the constants defined by the regex library for match
flags, with the keys being the (string) names of the constants. If the table argument is supplied then it
is used as the output table, otherwise anew tableis created.
Since: 1.11.3

Arguments
table (optional) A tablefor placing resultsinto

Returns

A tablefilled with the results.

11.14.1.6. GRegex.match(subject, pattern, [init], [cf], [ef])

Searchesfor the first match of the regexp pattern in the string subject, starting from offset init, subject
to flags cf and ef. The pattern is compiled each time this is called, unlike the class method match

function.
Since: 1.11.3
Arguments
subject Subject string to search
pattern A Perl-compatible regular expression pattern string or GRegex object
init (optional) start offset in the subject (can be negative)
cf (optional) compilation flags (bitwise OR)
ef (optiona) match execution flags (bitwise OR)
Returns

On success, returns all substring matches (" captures'), in the order they appear in the pattern. falseis
returned for sub-patterns that did not participate in the match. If the pattern specified no captures then
the whole matched substring is returned. On failure, returns nil.

11.14.1.7. GRegex.find(subject, pattern, [init], [cf], [ef])

Searchesfor the first match of the regexp pattern in the string subject, starting from offset init, subject
to flags ef. The pattern is compiled each time thisis called, unlike the class method find function.

Since: 1.11.3

Arguments

subject Subject string to search

166

Wireshark’s Lua API

Reference Manual
pattern A Perl-compatible regular expression pattern string or GRegex object
init (optional) start offset in the subject (can be negative)
cf (optiona) compilation flags (bitwise OR)
ef (optional) match execution flags (bitwise OR)

Returns

On success, returns the start point of the match (a number), the end point of the match (a number),
and all substring matches ("captures'), in the order they appear in the pattern. falseisreturned for sub-
patterns that did not participate in the match. On failure, returns nil.

11.14.1.8. GRegex.gmatch(subject, pattern, [init], [cf], [ef])

Returns an iterator for repeated matching of the pattern patt in the string subj, subject to flags cf and
ef. The function is intended for use in the generic for Lua construct. The pattern can be a string or a
GRegex object previously compiled with GRegex.new().

Since: 1.11.3
Arguments
subject Subject string to search
pattern A Perl-compatible regular expression pattern string or GRegex object
init (optional) start offset in the subject (can be negative)
cf (optional) compilation flags (bitwise OR)
ef (optional) match execution flags (bitwise OR)

Returns

Theiterator functioniscalled by Lua. On every iteration (that is, on every match), it returnsall captures
in the order they appear in the pattern (or the entire match if the pattern specified no captures). The
iteration will continuetill the subject failsto match.

11.14.1.9. GRegex.gsub(subject, pattern, [repl], [max], [cf], [ef])

Searches for al matches of the pattern in the string subject and replaces them according to the
parameters repl and max. The pattern can be a string or a GRegex object previously compiled with
GRegex.new().

Since: 1.11.3

For details see: http://rrthomas.github.io/Irexlib/manual .html#gsub

Arguments
subject Subject string to search
pattern A Perl-compatible regular expression pattern string or GRegex object
repl (optional) Substitution source string, function, table, false or nil
max (optional) Maximum number of matches to search for, or control function, or nil
cf (optional) Compilation flags (bitwise OR)

167

http://rrthomas.github.io/lrexlib/manual.html#gsub

Wireshark’s Lua API
Reference Manud

ef (optional) Match execution flags (bitwise OR)
Returns

On success, returns the subject string with the substitutions made, the number of matches found, and
the number of substitutions made.

11.14.1.10. GRegex.split(subject, sep, [cf], [ef])

Splits a subject string subj into parts (sections). The sep parameter is a regular expression pattern
representing separators between the sections. The function is intended for use in the generic for Lua
construct. The function returns an iterator for repeated matching of the pattern sep in the string subj,
subject to flags cf and ef. The sep pattern can be a string or a GRegex object previously compiled
with GRegex.new(). Unlike gmatch, there will aways be at least one iteration pass, even if there are
no matches in the subject.

Since: 1.11.3
Arguments
subject Subject string to search
sep A Perl-compatible regular expression pattern string or GRegex object
cf (optional) compilation flags (bitwise OR)
ef (optional) match execution flags (bitwise OR)

Returns
Theiterator functioniscalled by Lua. On every iteration, it returns a subject section (can be an empty
string), followed by all capturesin the order they appear in the sep pattern (or the entire match if the

sep pattern specified no captures). If there is no match (this can occur only in the last iteration), then
nothing is returned after the subject section. The iteration will continuetill the end of the subject.

11.14.1.11. GRegex.version()

Returns areturns a string containing the version of the used library.

Since: 1.11.3
Returns
The version string
11.14.1.12. gregex:match(subject, [init], [ef])

Searchesfor the first match of the regexp pattern in the string subject, starting from offset init, subject

to flags €f.
Since: 1.11.3
Arguments
subject Subject string to search
init (optional) start offset in the subject (can be negative)
ef (optional) match execution flags (bitwise OR)

168

Wireshark’s Lua API
Reference Manud

Returns

On success, returns all substring matches (“captures’), in the order they appear in the pattern. falseis
returned for sub-patterns that did not participate in the match. If the pattern specified no captures then
the whole matched substring is returned. nil is returned if the pattern did not match.

11.14.1.13. gregex:find(subject, [init], [ef])

Searches for the first match of the regexp pattern in the string subject, starting from offset init, subject

to flags €f.
Since: 1.11.3
Arguments
subject Subject string to search
init (optional) start offset in the subject (can be negative)
ef (optiona) match execution flags (bitwise OR)
Returns

On success, returns the start point of the match (a number), the end point of the match (a number),
and all substring matches ("captures'), in the order they appear in the pattern. falseisreturned for sub-
patterns that did not participate in the match. On failure, returns nil.

11.14.1.14. gregex:exec(subject, [init], [ef])

Searches for the first match of the compiled GRegex object in the string subject, starting from offset
init, subject to the execution match flags ef.

Since: 1.11.3
Arguments
subject Subject string to search
init (optional) start offset in the subject (can be negative)
ef (optional) match execution flags (bitwise OR)

Returns

On success, returns the start point of the first match (a number), the end point of the first match (a
number), and the offsets of substring matches (“captures’ in Luaterminology) are returned as a third
result, in a table. This table contains false in the positions where the corresponding sub-pattern did
not participate in the match. On failure, returns nil. Example: If the whole match is at offsets 10,20
and substring matches are at offsets 12,14 and 16,19 then the function returns the following: 10, 20,
{12,14,16,19}.

11.14.1.15. gregex:dfa_exec(subject, [init], [ef])

Matches a compiled regular expression GRegex object against a given subject string subj, using a
DFA matching agorithm.

Since: 1.11.3

Arguments

subject Subject string to search

169

Wireshark’s Lua API

Reference Manual
init (optional) start offset in the subject (can be negative)
ef (optiona) match execution flags (bitwise OR)

Returns
On success, returns the start point of the matches found (a number), a table containing the end points
of the matches found, the longer matches first, and the number of matches found as the third return

value. On failure, returns nil. Example: If there are 3 matches found starting at offset 10 and ending
at offsets 15, 20 and 25 then the function returns the following: 10, { 25,20,15}, 3

11.14.1.16. gregex:__tostring()

Returns a string containing debug information about the GRegex object.
Since: 1.11.3
Returns

The debug string

170

Chapter 12. User Interface

12.1. Introduction

12.2

Wireshark can be logically separated into the backend (dissecting protocols, file loading and saving,
capturing, etc.) and the frontend (the user interface).

The following frontends are currently maintained by the Wireshark development team:
e Wireshark, Qt based (Wireshark 1.11 and newer)

* Wireshark, GTK 2.x based

» Wireshark, GTK 3.x based (Wireshark 1.10 and newer)

» TShark, console based

There are other Wireshark frontends which are not developed nor maintained by the Wireshark
development team:

» Packetyzer (Win32 native interface, written in Delphi and released under the GPL, see: http://
www.paglo.com/opensource/packetyzer)

* hethereal (web based frontend, not actively maintained and not finished)

This chapter is focused on the Wireshark frontend, and especially on the Qt interface.

The Qt Application Framework

Qt is a cross-platform application development framework. While we mainly use the core (QtCore)
and user interface (QtWidgets) modules, it also supports a number of other modules for specialized
application development, such as networking (QtNetwork) and web browsing (QtWebKit).

At the time of this writing (February 2015) we are in the process of porting the main Wireshark
application to Qt. The sections below provide an overview of the application and tips for Qt
development in our environment.

12.2.1. Source Code Overview

Wireshark’s mai n entry point is in wireshark-gt.cpp. Command-line arguments are processed there
and themain application class (W r eshar kAppl i cat i on) instanceis created there along with the
main window.

Themainwindow along with therest of the application residesin ui/gt. Dueto its size the main window
code is split into two modules, main_window.cpp and main_window_slots.cpp.

Most of the modules in ui/gt are dialogs. Although we follow Qt naming conventions for class
names, we follow our own conventions by separating file name components with underscores. For
example, ColoringRulesDialogisdefinedin coloring_rules _dialog.cpp, coloring_rules dialog.h, and
coloring_rules dialog.ui.

General-purpose dialogs are subclasses of QDi al og. Dialogsthat rely on the current capture file can
subclass W r eshar kDi al og, which provides methods and members that make it easier to access
the capture file and to keep the dialog open when the capture file closes.

171

http://www.paglo.com/opensource/packetyzer
http://www.paglo.com/opensource/packetyzer

User Interface

12.2.2. Coding Practices and Naming Conventions
12.2.2.1. Names

The code in ui/gt directory uses three APIs. Qt (which uses InterCapConvention), GLib (which
uses underscore_convention), and the Wireshark API (which also uses underscore_convention). Asa
genera rule Wireshark’s Qt code uses InterCapConvention for class names, interCapConvention for
methods, and underscore_convention for variables, with atrailing_underscore for member variables.

12.2.2.2. Dialogs

Dialogs that work with capture file information shouldn’t close just because the capture file closes.
SubclassingW r eshar kDi al og asdescribed abovecan makeit easier to persist across capturefiles.

When you create a window with arow of standard “OK” and “Close” buttons at the bottom using Qt
Creator you will end up with a subclass of QDialog. This is fine for traditional modal dialogs, but
many timesthe “dialog” needs to behave like a QWindow instead.

Modal dialogs should be constructed with QDI al og(par ent). Modeless dialogs (windows)
should be constructed with QDi al og(NULL, @ :: W ndow) . Other combinations (particularly
Qi al og(parent, Q::Wndow)) can lead to odd and inconsistent behavior. Again,
subclassing W r eshar kDi al og will take care of thisfor you.

Most of the dialogs in ui/qt share many similarities, including method names, widget names, and
behavior. Most dialogs should have the following, although it’s not strictly required:

e Anupdat eW dget s() method, which enables and disables widgets depending on the current
state and constraints of the dialog. For example, the Coloring Rules dial og disables the Save button
if the user has entered an invalid display filter.

* A hintLabel () widget subclassed from QLabel or El i dedLabel , placed just above the
dialog button box. The hint label provides guidance and feedback to the user.

* A context menu (ct x_enu_) for additional actions not present in the button box.

* If thedialogbox containsaQTr eeW dget you might want to add your own QTr eeW dget | t em
subclass with the following methods:

dr awDat a() Draws column data with any needed formatting.

col Dat a() Returns the data for each column as a Qvari ant . Used for copying as CSV,
YAML, etc.

oper at or <(Allows sorting columns based on their raw data.

12.2.2.3. Strings

If you're using GLib string functions or plain old C character array idioms in Qt-only code you're
probably doing something wrong. QStrings are generally much safer and easier to use. They also
make tranglations easier.

If you need to pass strings between Qt and GLib you can use a number of convenience routines which
are defined in ui/qt/qt_ui_utils.h.

If you're calling a function that returns wmem-allocated memory it might make more sense to add a
wrapper function to gt_ui_utils than to call wmem_freein your code.

12.2.2.4. Mixing C and C++

Sometimes we haveto cal C functions from one of Wreshark’s C cal |l backs
and pass Cobjectsto or from C. Tap listeners are a common example. The C++ FAQ describes
how to do this safely.

172

http://www.parashift.com/c++-faq/mixing-c-and-cpp.html:
http://www.parashift.com/c++-faq/mixing-c-and-cpp.html:

User Interface

Tapping usually involves declaring static methods for callbacks, passingt hi s asthe tap data.

12.2.2.5. Internationalization and Translation

Qt provides a convenient method for trandating text: Qobj ect : : tr (), usually availableastr () .
However, please avoid using t r () for static strings and define them in *.ui files instead. tr ()
on manually created objects like Qvenu are not automatically retranslated and must instead be

manually translated using changeEvent () andr et ransl at eUi () . See summary_dialog.[ch]
for an exampl e of this.

Note

If your object life is short and your components are (re)created dynamically then it is
oktousetr ().

In most cases you should handle the changeEvent in order to catch QEvent : : LanguageChange.

12.2.3. Other Issues

The main window has many QA ctions which are shared with child widgets. See ui/gt/proto_tree.cpp
for an example of this.

12.3. The GTK library

We're switching to Qt

This chapter describes the state of our stable release, which isbased on GTK+. A major
effort is underway to migrate Wireshark to Qt. If you would like to add a new interface
feature you should use it and not GTK+.

Wireshark wasinitially based onthe GTK toolkit. See http://www.gtk.org for details. GTK isdesigned
to hide the details of the underlying GUI in a platform independent way. As GTK isintended to be a
multiplatform tool, there are some drawbacks, as the result is a somewhat "non native" ook and feel.

GTK is available for many different platforms including, but not limited to: Unix/Linux, OS X and
Win32. It's the foundation of the famous GNOME desktop, so the future development of GTK
should be certain. GTK isimplemented in plain C (as is Wireshark itself), and available under the
LGPL (Lesser General Public License), making it free to used by commercial and noncommercial
applications.

There are other similar toolkits like wxWidgets which could also be used for Wireshark. There's no
"one and only" reason for or against any of these toolkits. However, the decision towards GTK was
made along time ago :-)

As of 2013 there are two major GTK versions available:

12.3.1. GTK Version 2.x

GTK 2.x depends on the following libraries:
» GObject (Object library. Basisfor GTK and others)
e GLib (A genera-purpose utility library, not specific to graphical user interfaces. GLib provides

many useful data types, macros, type conversions, string utilities, file utilities, a main loop
abstraction, and so on.)

173

http://www.gtk.org

User Interface

e Pango (Pango is a library for internationalized text handling. It centers around the PangoL ayout
object, representing a paragraph of text. Pango provides the engine for GtkTextView, GtkLabel,
GtkEntry, and other widgets that display text.)

* ATK (ATK isthe Accessibility Toolkit. It provides aset of generic interfaces allowing accessibility
technologies to interact with a graphical user interface. For example, a screen reader uses ATK to
discover the text in an interface and read it to blind users. GTK+ widgets have built-in support for
accessibility using the ATK framework.)

» GdkPixbuf (Thisisasmall library which allows you to create GdkPixbuf ("pixel buffer") objects
from image data or imagefiles. Use a GdkPixbuf in combination with Gtklmage to display images.)

* GDK (GDK is the abstraction layer that allows GTK+ to support multiple windowing systems.
GDK providesdrawing and window system facilitieson X11, Windows, and the Linux framebuffer
device)

12.3.2. GTK Version 3.x

Wireshark (as of version 1.10) has been ported to use the GTK3 library.
GTK 3.x depends on the following libraries:

(See GTK 2.x)

12.3.3. Compatibility GTK versions

The GTK library itself defines some values which makes it easy to distinguish between the versions,
e.g. GTK_MAJOR_VERSI ONand GTK_M NOR_VERSI ONwill be set to the GTK version at compile
time inside the gtkversion.h header.

12.3.4. GTK resources on the web

12.4.

Y ou can find several resources about GTK.

First of al, have alook at http://www.gtk.org. This will be the first place to look at. If you want
to develop GTK related things for Wireshark, the most important place might be the GTK API
documentation at http:/library.gnome.org/devel/gtk/stable/.

Several mailing lists are available about GTK development, see http://mail.gnome.org/mailman/
listinfo, the gtk-app-devel-list may be your friend.

As it’s often done wrong: You should post a mail to help the developers there instead of only
complaining. Posting such athing like "1 don’t like your dialog, it looks ugly" won’t be of much help.
Y ou might think about what you dislike and describe why you dislike it and provide a suggestion for
a better way.

GUI Reference documents

Although the GUI development of Wireshark is platform independent, the Wireshark development
team tries to follow the GNOME Human Interface Guidelines (HIG) where appropriate. This is the
case, because both GNOME and Wireshark are based on the GTK+ toolkit and the GNOME HIG is
excellently written and easy to understand.

For further reference, see the following documents:

» Android Design: http://devel oper.android.com/design/index.html (Wireshark doesn’t haveamobile
frontend but thereis still useful information here)

 GNOME Human Interface Guidelines: http://library.gnome.org/devel/hig-book/stable/

174

http://www.gtk.org
http://library.gnome.org/devel/gtk/stable/
http://mail.gnome.org/mailman/listinfo
http://mail.gnome.org/mailman/listinfo
http://developer.android.com/design/index.html
http://library.gnome.org/devel/hig-book/stable/

User Interface

» The KDE Usahility/HIG project: http://techbase.kde.org/Projects/Usability/HIG

e OS X Human Interface Guidelines. https.//devel oper.apple.com/library/mac/documentation/
UserExperience/Conceptual/AppleH| Guidelines/ I ntro/Intro.html

» Design apps for the Windows desktop: http://msdn.microsoft.com/en-us/library/Aa511258.aspx

12.5. Adding/Extending Dialogs

Thisisusually the main areafor contributing new user interface features.

XXX: add the various functions from gtk/dig_utils.h

12.6. Widget naming

It seems to be common sense to name the widgets with some descriptive trailing characters, like:
« xy_lb = gtk_label_new();

* Xxy_ch = gtk_checkbox_new();

+ XXX: add more examples

However, this schemaisn't used at al places inside the code.

12.7. Common GTK programming pitfalls

There are some common pitfallsin GTK programming.

12.7.1. Usage of gtk _widget_show() /
gtk_widget_show_all()

When a GTK widget is created it will be hidden by default. In order to show it, a call to
otk_widget_show() has to be done.

Itisn't necessary to do thisfor each and every widget created. A call to gtk_widget_show_all() onthe
parent of all the widgets in question (e.g. a dialog window) can be done, so al of its child widgets
will be shown too.

175

http://techbase.kde.org/Projects/Usability/HIG
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
http://msdn.microsoft.com/en-us/library/Aa511258.aspx

Chapter 13. This Document’s License
(GPL)

Aswith the original license and documentation distributed with Wireshark, this document is covered
by the GNU General Public License (GNU GPL).

If you haven’t read the GPL before, please do so. It explains al the things that you are allowed to do
with this code and documentation.

GNU GENERAL PUBLI C LI CENSE
Version 2, June 1991

Copyright (C 1989, 1991 Free Software Foundation, Inc

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permtted to copy and distribute verbatim copies
of this |license docunment, but changing it is not allowed.

Pr eanbl e

The licenses for nost software are designed to take away your
freedomto share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedomto share and change free
software--to make sure the software is free for all its users. This
General Public License applies to nost of the Free Software
Foundation's software and to any other program whose authors comit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your prograns, too

When we speak of free software, we are referring to freedom not
price. Qur General Public Licenses are designed to make sure that you
have the freedomto distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free prograns; and that you know you can do these things

To protect your rights, we need to nake restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you nodify it.

For exanple, if you distribute copies of such a program whether
gratis or for a fee, you nust give the recipients all the rights that
you have. You must nake sure that they, too, receive or can get the
source code. And you nust show themthese terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this |license which gives you | egal perm ssion to copy,
distribute and/or nodify the software

Al so, for each author's protection and ours, we want to nmake certain
that everyone understands that there is no warranty for this free

software. |If the software is nodified by someone el se and passed on, we
want its recipients to know that what they have is not the original, so
that any problenms introduced by others will not reflect on the original

aut hors' reputations.

Finally, any free programis threatened constantly by software
patents. W wish to avoid the danger that redistributors of a free
programw | | individually obtain patent |icenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent nust be licensed for everyone's free use or not |icensed at all

The precise terns and conditions for copying, distribution and
nodi fication follow

GNU GENERAL PUBLI C LI CENSE

176

This Document’s License (GPL)

TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MCDI FI CATI ON

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the ternms of this General Public License. The "Progrant, bel ow,
refers to any such programor work, and a "work based on the Progrant
means either the Program or any derivative work under copyright |aw
that is to say, a work containing the Programor a portion of it,
either verbatimor with nodifications and/or translated into another
| anguage. (Hereinafter, translation is included without limtation in
the term"nodification".) Each licensee is addressed as "you"

Activities other than copying, distribution and nodification are not
covered by this License; they are outside its scope. The act of
running the Programis not restricted, and the output fromthe Program
is covered only if its contents constitute a work based on the
Program (i ndependent of havi ng been made by running the Program

Whet her that is true depends on what the Program does

1. You may copy and distribute verbatimcopies of the Programs
source code as you receive it, in any medium provided that you
conspi cuously and appropriately publish on each copy an appropriate
copyright notice and disclainer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Programa copy of this License
along with the Program

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee

2. You may nodify your copy or copies of the Programor any portion
of it, thus formng a work based on the Program and copy and
di stribute such nodifications or work under the terms of Section 1
above, provided that you also neet all of these conditions

a) You nust cause the nodified files to carry prom nent notices
stating that you changed the files and the date of any change

b) You nust cause any work that you distribute or publish, that in
whole or in part contains or is derived fromthe Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License

c) If the nodified programnnormally reads comrands interactively
when run, you nust cause it, when started running for such
interactive use in the nost ordinary way, to print or display an
announcenent including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user howto view a copy of this
Li cense. (Exception: if the Programitself is interactive but
does not normally print such an announcenment, your work based on
the Programis not required to print an announcenent.)

These requirements apply to the nodified work as a whole. |If
identifiable sections of that work are not derived fromthe Program

and can be reasonably consi dered i ndependent and separate works in
thensel ves, then this License, and its ternms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program the distribution of the whole nust be on the terns of
this License, whose permissions for other |icensees extend to the

entire whole, and thus to each and every part regardl ess of who wote it.

Thus, it is not the intent of this section to claimrights or contest
your rights to work witten entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or

col l ective works based on the Program

In addition, nere aggregation of another work not based on the Program
with the Program (or with a work based on the Progran) on a vol une of
a storage or distribution medi um does not bring the other work under

177

This Document’s License (GPL)

the scope of this License

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable formunder the terns of
Sections 1 and 2 above provided that you al so do one of the follow ng

a) Acconpany it with the conplete correspondi ng nachi ne-readabl e
source code, which nust be distributed under the terms of Sections
1 and 2 above on a medium custonmarily used for software interchange

b) Acconmpany it with a witten offer, valid for at least three
years, to give any third party, for a charge no nore than your
cost of physically perform ng source distribution, a conplete
machi ne-readabl e copy of the correspondi ng source code, to be

di stributed under the terms of Sections 1 and 2 above on a medi um
customarily used for software interchange; or

c) Acconpany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is

al l owed only for noncommercial distribution and only if you
received the programin object code or executable formw th such
an offer, in accord with Subsection b above.)

The source code for a work neans the preferred formof the work for
maki ng nodi fications to it. For an executable work, conplete source
code nmeans all the source code for all nodules it contains, plus any
associated interface definition files, plus the scripts used to
control conpilation and installation of the executable. However, as a
speci al exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form with the major conponents (conpiler, kernel, and so on) of the
operating systemon which the executabl e runs, unless that conponent
itsel f acconpani es the executable

If distribution of executable or object code is made by offering
access to copy froma designated place, then offering equival ent
access to copy the source code fromthe sanme place counts as
distribution of the source code, even though third parties are not
conpelled to copy the source along with the object code

4. You may not copy, nodify, sublicense, or distribute the Program
except as expressly provided under this License. Any attenpt
otherwi se to copy, nodify, sublicense or distribute the Programis
void, and will autonatically termi nate your rights under this License
However, parties who have received copies, or rights, fromyou under
this License will not have their licenses termnated so | ong as such
parties remain in full conpliance

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to nodify or
distribute the Programor its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
nmodi fying or distributing the Program (or any work based on the
Progran), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or nodifying
the Program or works based on it.

6. Each tine you redistribute the Program (or any work based on the
Progran), the recipient automatically receives a license fromthe
original licensor to copy, distribute or nodify the Program subject to
these terms and conditions. You nmay not inpose any further
restrictions on the recipients' exercise of the rights granted herein
You are not responsible for enforcing conpliance by third parties to
this License

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not linmted to patent issues)
condi tions are inposed on you (whether by court order, agreenent or
otherw se) that contradict the conditions of this License, they do not
excuse you fromthe conditions of this License. |f you cannot
distribute so as to satisfy sinultaneously your obligations under this
Li cense and any other pertinent obligations, then as a consequence you

or,

178

This Document’s License (GPL)

may not distribute the Programat all. For exanple, if a patent
license would not permt royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely fromdistribution of the Program

If any portion of this section is held invalid or unenforceabl e under
any particular circunmstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other

ci rcumst ances

It is not the purpose of this section to induce you to infringe any
patents or other property right clains or to contest validity of any
such clains; this section has the sole purpose of protecting the
integrity of the free software distribution system which is

impl enented by public license practices. Mny peopl e have nmade
generous contributions to the wide range of software distributed
through that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is willing
to distribute software through any other systemand a |icensee cannot

i npose that choice

This section is intended to nake thoroughly clear what is believed to
be a consequence of the rest of this License

8. If the distribution and/or use of the Programis restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limtation excluding
those countries, so that distribution is pernmitted only in or anong
countries not thus excluded. |In such case, this License incorporates
the limtation as if witten in the body of this License

9. The Free Software Foundati on may publish revised and/or new versions
of the General Public License fromtime to time. Such new versions wll
be simlar in spirit to the present version, but nay differ in detail to
address new probl enms or concerns

Each version is given a distinguishing version nunber. [If the Program

speci fies a version nunber of this License which applies to it and "any
later version", you have the option of follow ng the terns and conditions
either of that version or of any later version published by the Free

Sof tware Foundation. |[If the Program does not specify a version nunber of
this License, you may choose any version ever published by the Free Software
Foundat i on

10. If you wish to incorporate parts of the Programinto other free
progranms whose distribution conditions are different, wite to the author
to ask for perm ssion. For software which is copyrighted by the Free
Sof tware Foundation, wite to the Free Software Foundation; we sonetinmes
make exceptions for this. Qur decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of pronoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LI CENSED FREE OF CHARGE, THERE | S NO WARRANTY
FOR THE PROGRAM TO THE EXTENT PERM TTED BY APPLI CABLE LAW EXCEPT WHEN
OTHERW SE STATED | N WRI TI NG THE COPYRI GHT HOLDERS ANDY OR OTHER PARTI ES
PROVI DE THE PROGRAM "AS | S" W THOUT WARRANTY OF ANY KI ND, ElI THER EXPRESSED
OR I MPLI ED, | NCLUDI NG BUT NOT LIMTED TO THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. THE ENTI RE RI SK AS
TO THE QUALI TY AND PERFORVANCE OF THE PROGRAM IS WTH YOU. SHOULD THE
PROGRAM PROVE DEFECTI VE, YOU ASSUME THE COST OF ALL NECESSARY SERVI Cl NG
REPAI R OR CORRECTI ON.

12. IN NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO I N WRI TI NG
WLL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY AND/ OR
REDI STRI BUTE THE PROGRAM AS PERM TTED ABOVE, BE LI ABLE TO YOU FOR DAMAGES,
I NCLUDI NG ANY GENERAL, SPECI AL, | NCI DENTAL OR CONSEQUENTI AL DAMAGES ARI SI NG
QUT OF THE USE OR I NABI LI TY TO USE THE PROGRAM (| NCLUDI NG BUT NOT LI M TED
TO LOSS OF DATA OR DATA BEI NG RENDERED | NACCURATE OR LOSSES SUSTAI NED BY

179

This Document’s License (GPL)

YOQU OR THI RD PARTIES OR A FAI LURE OF THE PROGRAM TO OPERATE W TH ANY OTHER
PROGRAMS) , EVEN | F SUCH HOLDER OR OTHER PARTY HAS BEEN ADVI SED OF THE
PGSSI BI LI TY OF SUCH DAMAGES.

END OF TERVS AND CONDI TI ONS
How to Apply These Ternms to Your New Progranms

If you devel op a new program and you want it to be of the greatest
possi bl e use to the public, the best way to achieve this is to nake it
free software which everyone can redistribute and change under these terns.

To do so, attach the following notices to the program It is safest
to attach themto the start of each source file to nost effectively
convey the exclusion of warranty; and each file should have at |east
the "copyright" line and a pointer to where the full notice is found.

& t;one line to give the progranmis name and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the

GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Al so add informati on on how to contact you by el ectronic and paper mail.

If the programis interactive, make it output a short notice like this
when it starts in an interactive node:

Gnhonovi si on version 69, Copyright (C year nanme of author

Gnonovi si on comes with ABSOLUTELY NO WARRANTY; for details type “show w .
This is free software, and you are wel come to redistribute it

under certain conditions; type "show c' for details.

The hypot heti cal commands “~show w and “show c¢' shoul d show the appropriate
parts of the General Public License. O course, the conmands you use may
be cal |l ed sonething other than “show w and “show c'; they could even be
mouse-clicks or menu itens--whatever suits your program

You shoul d al so get your enployer (if you work as a progranmmer) or your
school, if any, to sign a "copyright disclainmer" for the program if
necessary. Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the program
“Gnonovi sion' (which makes passes at conpilers) witten by James Hacker.

& t;signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your programinto
proprietary prograns. |If your programis a subroutine library, you nay
consider it nore useful to permt linking proprietary applications with the
library. If this is what you want to do, use the G\U Li brary General
Public License instead of this License.

180

	Wireshark Developer’s Guide
	Table of Contents
	Preface
	1. Foreword
	2. Who should read this document?
	3. Acknowledgements
	4. About this document
	5. Where to get the latest copy of this document?
	6. Providing feedback about this document

	Part I. Wireshark Build Environment
	Chapter 1. Introduction
	1.1. Introduction
	1.2. What is Wireshark?
	1.3. Supported Platforms
	1.3.1. Unix
	1.3.2. Linux
	1.3.3. Microsoft Windows

	1.4. Development and maintenance of Wireshark
	1.4.1. Programming languages used
	1.4.2. Open Source Software

	1.5. Releases and distributions
	1.5.1. Binary distributions
	1.5.2. Source code distributions

	1.6. Automated Builds (Buildbot)
	1.6.1. Advantages
	1.6.2. What does the Buildbot do?

	1.7. Reporting problems and getting help
	1.7.1. Website
	1.7.2. Wiki
	1.7.3. FAQ
	1.7.4. Other sources
	1.7.5. Mailing Lists
	1.7.6. Bug database (Bugzilla)
	1.7.7. Q&A Site
	1.7.8. Reporting Problems
	1.7.9. Reporting Crashes on UNIX/Linux platforms
	1.7.10. Reporting Crashes on Windows platforms

	Chapter 2. Quick Setup
	2.1. UNIX: Installation
	2.2. Win32/64: Step-by-Step Guide
	2.2.1. Install PowerShell
	2.2.2. Optional: Install Chocolatey
	2.2.3. Install Microsoft C compiler and SDK
	2.2.4. Install Qt
	2.2.5. Install Cygwin
	2.2.6. Install Python
	2.2.7. Install Git
	2.2.7.1. The Official Windows Installer
	2.2.7.2. Git Extensions
	2.2.7.3. TortoiseGit
	2.2.7.4. Command Line client via Chocolatey
	2.2.7.5. Others

	2.3. Install CMake
	2.3.1. Install and Prepare Sources
	2.3.2. Open a Visual Studio Command Prompt
	2.3.3. Generate the build files
	2.3.4. Build Wireshark
	2.3.5. Debug Environment Setup
	2.3.6. Optional: Create User’s and Developer’s Guide
	2.3.7. Optional: Create a Wireshark Installer

	Chapter 3. Work with the Wireshark sources
	3.1. Introduction
	3.2. The Wireshark Git repository
	3.2.1. The web interface to the Git repository

	3.3. Obtain the Wireshark sources
	3.3.1. Git over SSH or HTTPS
	3.3.2. Git web interface
	3.3.3. Buildbot Snapshots
	3.3.4. Released sources

	3.4. Update the Wireshark sources
	3.4.1. Update Using Git
	3.4.2. Update Using Source Archives

	3.5. Build Wireshark
	3.5.1. Building on Unix
	3.5.2. Win32 native

	3.6. Run generated Wireshark
	3.6.1. Unix/Linux
	3.6.2. Win32 native

	3.7. Debug your generated Wireshark
	3.7.1. Unix/Linux
	3.7.2. Win32 native

	3.8. Make changes to the Wireshark sources
	3.9. Contribute your changes
	3.9.1. Some tips for a good patch
	3.9.2. Code Requirements
	3.9.3. Uploading your changes
	3.9.4. Backporting a change

	3.10. Apply a patch from someone else
	3.10.1. Using patch

	3.11. Binary packaging
	3.11.1. Debian: .deb packages
	3.11.2. Red Hat: .rpm packages
	3.11.3. OS X: .dmg packages
	3.11.4. Win32: NSIS .exe installer
	3.11.5. Win32: PortableApps .paf.exe package

	Chapter 4. Tool Reference
	4.1. Introduction
	4.2. Windows PowerShell
	4.3. Chocolatey
	4.4. Windows: Cygwin
	4.4.1. Installing Cygwin using the Cygwin installer
	4.4.2. Add/Update/Remove Cygwin Packages
	4.4.3. Installing Cygwin using Chocolatey

	4.5. GNU compiler toolchain (UNIX only)
	4.5.1. gcc (GNU compiler collection)
	4.5.2. gdb (GNU project debugger)
	4.5.3. ddd (GNU Data Display Debugger)
	4.5.4. make (GNU Make)

	4.6. Microsoft compiler toolchain (Windows native)
	4.6.1. Toolchain Package Alternatives
	4.6.2. cl.exe (C Compiler)
	4.6.3. link.exe (Linker)
	4.6.4. C-Runtime "Redistributable" Files
	4.6.4.1. msvcr120.dll / vcredist_x86.exe / vcredist_x64.exe - Version 12.0 (2013)

	4.6.5. Windows (Platform) SDK
	4.6.6. HTML Help
	4.6.6.1. HTML Help Compiler (hhc.exe)
	4.6.6.2. HTML Help Build Files (htmlhelp.c / htmlhelp.lib)

	4.6.7. Debugger
	4.6.7.1. Visual Studio integrated debugger
	4.6.7.2. Debugging Tools for Windows

	4.7. bash
	4.7.1. UNIX and Cygwin: GNU bash
	4.7.2. Windows native:

	4.8. Python
	4.9. Perl
	4.9.1. UNIX and Cygwin: Perl

	4.10. sed
	4.10.1. UNIX and Cygwin: sed
	4.10.2. Windows native: sed

	4.11. Bison
	4.11.1. UNIX or Cygwin: bison
	4.11.2. Windows Native: Win flex-bison and bison

	4.12. Flex
	4.12.1. UNIX or Cygwin: flex
	4.12.2. Windows Native: Win flex-bison and flex

	4.13. Git client
	4.13.1. UNIX or Cygwin: git
	4.13.2. Windows native: git

	4.14. Git Powershell Extensions (optional)
	4.15. Git GUI client (optional)
	4.16. patch (optional)
	4.16.1. UNIX and Cygwin: patch
	4.16.2. Windows native: patch

	4.17. Windows: NSIS (optional)
	4.18. Windows: PortableApps (optional)

	Chapter 5. Library Reference
	5.1. Introduction
	5.2. Binary library formats
	5.2.1. Unix
	5.2.2. Win32: MSVC
	5.2.3. Win32: cygwin gcc

	5.3. Win32: Automated library download
	5.4. Qt
	5.4.1. Unix
	5.4.2. Win32 MSVC

	5.5. GTK+ / GLib / GDK / Pango / ATK / GNU gettext / GNU libiconv
	5.5.1. Unix
	5.5.2. Win32 MSVC

	5.6. SMI (optional)
	5.6.1. Unix
	5.6.2. Win32 MSVC

	5.7. c-ares (optional)
	5.7.1. Unix
	5.7.2. Win32 MSVC

	5.8. zlib (optional)
	5.8.1. Unix
	5.8.2. Win32 MSVC

	5.9. libpcap/WinPcap (optional)
	5.9.1. Unix: libpcap
	5.9.2. Win32 MSVC: WinPcap

	5.10. GnuTLS (optional)
	5.10.1. Unix
	5.10.2. Win32 MSVC

	5.11. Gcrypt (optional)
	5.11.1. Unix
	5.11.2. Win32 MSVC

	5.12. Kerberos (optional)
	5.12.1. Unix
	5.12.2. Win32 MSVC

	5.13. LUA (optional)
	5.13.1. Unix
	5.13.2. Win32 MSVC

	5.14. PortAudio (optional)
	5.14.1. Unix
	5.14.2. Win32 MSVC

	5.15. GeoIP (optional)
	5.15.1. Unix
	5.15.2. Win32 MSVC

	5.16. WinSparkle (optional)
	5.16.1. Win32 MSVC

	Part II. Wireshark Development
	Chapter 6. How Wireshark Works
	6.1. Introduction
	6.2. Overview
	6.3. Capturing packets
	6.4. Capture Files
	6.5. Dissect packets

	Chapter 7. Introduction
	7.1. Source overview
	7.2. Coding Style
	7.3. The GLib library

	Chapter 8. Packet capturing
	8.1. How to add a new capture type to libpcap

	Chapter 9. Packet dissection
	9.1. How it works
	9.2. Adding a basic dissector
	9.2.1. Setting up the dissector
	9.2.2. Dissecting the details of the protocol
	9.2.3. Improving the dissection information

	9.3. How to handle transformed data
	9.4. How to reassemble split packets
	9.4.1. How to reassemble split UDP packets
	9.4.2. How to reassemble split TCP Packets

	9.5. How to tap protocols
	9.6. How to produce protocol stats
	9.7. How to use conversations
	9.8. idl2wrs: Creating dissectors from CORBA IDL files
	9.8.1. What is it?
	9.8.2. Why do this?
	9.8.3. How to use idl2wrs
	9.8.4. TODO
	9.8.5. Limitations
	9.8.6. Notes

	Chapter 10. Lua Support in Wireshark
	10.1. Introduction
	10.2. Example of Dissector written in Lua
	10.3. Example of Listener written in Lua

	Chapter 11. Wireshark’s Lua API Reference Manual
	11.1. Saving capture files
	11.1.1. Dumper
	11.1.1.1. Dumper.new(filename, [filetype], [encap])
	11.1.1.2. dumper:close()
	11.1.1.3. dumper:flush()
	11.1.1.4. dumper:dump(timestamp, pseudoheader, bytearray)
	11.1.1.5. dumper:new_for_current([filetype])
	11.1.1.6. dumper:dump_current()

	11.1.2. PseudoHeader
	11.1.2.1. PseudoHeader.none()
	11.1.2.2. PseudoHeader.eth([fcslen])
	11.1.2.3. PseudoHeader.atm([aal], [vpi], [vci], [channel], [cells], [aal5u2u], [aal5len])
	11.1.2.4. PseudoHeader.mtp2([sent], [annexa], [linknum])

	11.2. Obtaining dissection data
	11.2.1. Field
	11.2.1.1. Field.new(fieldname)
	11.2.1.2. Field.list()
	11.2.1.3. field:__call()
	11.2.1.4. field:__tostring()
	11.2.1.5. field.name
	11.2.1.6. field.display
	11.2.1.7. field.type

	11.2.2. FieldInfo
	11.2.2.1. fieldinfo:__len()
	11.2.2.2. fieldinfo:__unm()
	11.2.2.3. fieldinfo:__call()
	11.2.2.4. fieldinfo:__tostring()
	11.2.2.5. fieldinfo:__eq()
	11.2.2.6. fieldinfo:__le()
	11.2.2.7. fieldinfo:__lt()
	11.2.2.8. fieldinfo.len
	11.2.2.9. fieldinfo.offset
	11.2.2.10. fieldinfo.value
	11.2.2.11. fieldinfo.label
	11.2.2.12. fieldinfo.display
	11.2.2.13. fieldinfo.type
	11.2.2.14. fieldinfo.source
	11.2.2.15. fieldinfo.range
	11.2.2.16. fieldinfo.generated
	11.2.2.17. fieldinfo.hidden
	11.2.2.18. fieldinfo.is_url
	11.2.2.19. fieldinfo.little_endian
	11.2.2.20. fieldinfo.big_endian
	11.2.2.21. fieldinfo.name

	11.2.3. Global Functions
	11.2.3.1. all_field_infos()

	11.3. GUI support
	11.3.1. ProgDlg
	11.3.1.1. ProgDlg.new([title], [task])
	11.3.1.2. progdlg:update(progress, [task])
	11.3.1.3. progdlg:stopped()
	11.3.1.4. progdlg:close()

	11.3.2. TextWindow
	11.3.2.1. TextWindow.new([title])
	11.3.2.2. textwindow:set_atclose(action)
	11.3.2.3. textwindow:set(text)
	11.3.2.4. textwindow:append(text)
	11.3.2.5. textwindow:prepend(text)
	11.3.2.6. textwindow:clear()
	11.3.2.7. textwindow:get_text()
	11.3.2.8. textwindow:close()
	11.3.2.9. textwindow:set_editable([editable])
	11.3.2.10. textwindow:add_button(label, function)

	11.3.3. Global Functions
	11.3.3.1. gui_enabled()
	11.3.3.2. register_menu(name, action, [group])
	11.3.3.3. new_dialog(title, action, …)
	11.3.3.4. retap_packets()
	11.3.3.5. copy_to_clipboard(text)
	11.3.3.6. open_capture_file(filename, filter)
	11.3.3.7. get_filter()
	11.3.3.8. set_filter(text)
	11.3.3.9. set_color_filter_slot(row, text)
	11.3.3.10. apply_filter()
	11.3.3.11. reload()
	11.3.3.12. browser_open_url(url)
	11.3.3.13. browser_open_data_file(filename)

	11.4. Post-dissection packet analysis
	11.4.1. Listener
	11.4.1.1. Listener.new([tap], [filter], [allfields])
	11.4.1.2. Listener.list()
	11.4.1.3. listener:remove()
	11.4.1.4. listener:__tostring()
	11.4.1.5. listener.packet
	11.4.1.6. listener.draw
	11.4.1.7. listener.reset

	11.5. Obtaining packet information
	11.5.1. Address
	11.5.1.1. Address.ip(hostname)
	11.5.1.2. address:__tostring()
	11.5.1.3. address:__eq()
	11.5.1.4. address:__le()
	11.5.1.5. address:__lt()

	11.5.2. Column
	11.5.2.1. column:__tostring()
	11.5.2.2. column:clear()
	11.5.2.3. column:set(text)
	11.5.2.4. column:append(text)
	11.5.2.5. column:prepend(text)
	11.5.2.6. column:fence()
	11.5.2.7. column:clear_fence()

	11.5.3. Columns
	11.5.3.1. columns:__tostring()
	11.5.3.2. columns:__newindex(column, text)
	11.5.3.3. columns:__index()

	11.5.4. NSTime
	11.5.4.1. NSTime.new([seconds], [nseconds])
	11.5.4.2. nstime:__call([seconds], [nseconds])
	11.5.4.3. nstime:__tostring()
	11.5.4.4. nstime:__add()
	11.5.4.5. nstime:__sub()
	11.5.4.6. nstime:__unm()
	11.5.4.7. nstime:__eq()
	11.5.4.8. nstime:__le()
	11.5.4.9. nstime:__lt()
	11.5.4.10. nstime.secs
	11.5.4.11. nstime.nsecs

	11.5.5. Pinfo
	11.5.5.1. pinfo.visited
	11.5.5.2. pinfo.number
	11.5.5.3. pinfo.len
	11.5.5.4. pinfo.caplen
	11.5.5.5. pinfo.abs_ts
	11.5.5.6. pinfo.rel_ts
	11.5.5.7. pinfo.delta_ts
	11.5.5.8. pinfo.delta_dis_ts
	11.5.5.9. pinfo.circuit_id
	11.5.5.10. pinfo.curr_proto
	11.5.5.11. pinfo.can_desegment
	11.5.5.12. pinfo.desegment_len
	11.5.5.13. pinfo.desegment_offset
	11.5.5.14. pinfo.fragmented
	11.5.5.15. pinfo.in_error_pkt
	11.5.5.16. pinfo.match_uint
	11.5.5.17. pinfo.match_string
	11.5.5.18. pinfo.port_type
	11.5.5.19. pinfo.src_port
	11.5.5.20. pinfo.dst_port
	11.5.5.21. pinfo.dl_src
	11.5.5.22. pinfo.dl_dst
	11.5.5.23. pinfo.net_src
	11.5.5.24. pinfo.net_dst
	11.5.5.25. pinfo.src
	11.5.5.26. pinfo.dst
	11.5.5.27. pinfo.match
	11.5.5.28. pinfo.columns
	11.5.5.29. pinfo.cols
	11.5.5.30. pinfo.private
	11.5.5.31. pinfo.hi
	11.5.5.32. pinfo.lo
	11.5.5.33. pinfo.conversation

	11.5.6. PrivateTable
	11.5.6.1. privatetable:__tostring()

	11.6. Functions for new protocols and dissectors
	11.6.1. Dissector
	11.6.1.1. Dissector.get(name)
	11.6.1.2. Dissector.list()
	11.6.1.3. dissector:call(tvb, pinfo, tree)
	11.6.1.4. dissector:__call(tvb, pinfo, tree)
	11.6.1.5. dissector:__tostring()

	11.6.2. DissectorTable
	11.6.2.1. DissectorTable.new(tablename, [uiname], [type], [base])
	11.6.2.2. DissectorTable.list()
	11.6.2.3. DissectorTable.heuristic_list()
	11.6.2.4. DissectorTable.get(tablename)
	11.6.2.5. dissectortable:add(pattern, dissector)
	11.6.2.6. dissectortable:set(pattern, dissector)
	11.6.2.7. dissectortable:remove(pattern, dissector)
	11.6.2.8. dissectortable:remove_all(dissector)
	11.6.2.9. dissectortable:try(pattern, tvb, pinfo, tree)
	11.6.2.10. dissectortable:get_dissector(pattern)
	11.6.2.11. dissectortable:add_for_decode_as(proto)
	11.6.2.12. dissectortable:__tostring()

	11.6.3. Pref
	11.6.3.1. Pref.bool(label, default, descr)
	11.6.3.2. Pref.uint(label, default, descr)
	11.6.3.3. Pref.string(label, default, descr)
	11.6.3.4. Pref.enum(label, default, descr, enum, radio)
	11.6.3.5. Pref.range(label, default, descr, max)
	11.6.3.6. Pref.statictext(label, descr)

	11.6.4. Prefs
	11.6.4.1. prefs:__newindex(name, pref)
	11.6.4.2. prefs:__index(name)

	11.6.5. Proto
	11.6.5.1. Proto.new(name, desc)
	11.6.5.2. proto:__call(name, desc)
	11.6.5.3. proto:register_heuristic(listname, func)
	11.6.5.4. proto.dissector
	11.6.5.5. proto.prefs
	11.6.5.6. proto.prefs_changed
	11.6.5.7. proto.init
	11.6.5.8. proto.name
	11.6.5.9. proto.description
	11.6.5.10. proto.fields
	11.6.5.11. proto.experts

	11.6.6. ProtoExpert
	11.6.6.1. ProtoExpert.new(abbr, text, group, severity)
	11.6.6.2. protoexpert:__tostring()

	11.6.7. ProtoField
	11.6.7.1. ProtoField.new(name, abbr, type, [valuestring], [base], [mask], [descr])
	11.6.7.2. ProtoField.uint8(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.3. ProtoField.uint16(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.4. ProtoField.uint24(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.5. ProtoField.uint32(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.6. ProtoField.uint64(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.7. ProtoField.int8(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.8. ProtoField.int16(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.9. ProtoField.int24(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.10. ProtoField.int32(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.11. ProtoField.int64(abbr, [name], [base], [valuestring], [mask], [desc])
	11.6.7.12. ProtoField.framenum(abbr, [name], [base], [frametype], [mask], [desc])
	11.6.7.13. ProtoField.bool(abbr, [name], [display], [valuestring], [mask], [desc])
	11.6.7.14. ProtoField.absolute_time(abbr, [name], [base], [desc])
	11.6.7.15. ProtoField.relative_time(abbr, [name], [desc])
	11.6.7.16. ProtoField.none(abbr, [name], [desc])
	11.6.7.17. ProtoField.ipv4(abbr, [name], [desc])
	11.6.7.18. ProtoField.ipv6(abbr, [name], [desc])
	11.6.7.19. ProtoField.ether(abbr, [name], [desc])
	11.6.7.20. ProtoField.float(abbr, [name], [desc])
	11.6.7.21. ProtoField.double(abbr, [name], [desc])
	11.6.7.22. ProtoField.string(abbr, [name], [desc])
	11.6.7.23. ProtoField.stringz(abbr, [name], [desc])
	11.6.7.24. ProtoField.bytes(abbr, [name], [desc])
	11.6.7.25. ProtoField.ubytes(abbr, [name], [desc])
	11.6.7.26. ProtoField.guid(abbr, [name], [desc])
	11.6.7.27. ProtoField.oid(abbr, [name], [desc])
	11.6.7.28. ProtoField.protocol(abbr, [name], [desc])
	11.6.7.29. ProtoField.rel_oid(abbr, [name], [desc])
	11.6.7.30. ProtoField.systemid(abbr, [name], [desc])
	11.6.7.31. ProtoField.eui64(abbr, [name], [desc])
	11.6.7.32. protofield:__tostring()

	11.6.8. Global Functions
	11.6.8.1. register_postdissector(proto, [allfields])
	11.6.8.2. dissect_tcp_pdus(tvb, tree, size, func, func, [desegment])

	11.7. Adding information to the dissection tree
	11.7.1. TreeItem
	11.7.1.1. treeitem:add_packet_field(protofield, [tvbrange], encoding, [label])
	11.7.1.2. treeitem:add([protofield], [tvbrange], [value], [label])
	11.7.1.3. treeitem:add_le([protofield], [tvbrange], [value], [label])
	11.7.1.4. treeitem:set_text(text)
	11.7.1.5. treeitem:append_text(text)
	11.7.1.6. treeitem:prepend_text(text)
	11.7.1.7. treeitem:add_expert_info([group], [severity], [text])
	11.7.1.8. treeitem:add_proto_expert_info(expert, [text])
	11.7.1.9. treeitem:add_tvb_expert_info(expert, tvb, [text])
	11.7.1.10. treeitem:set_generated([bool])
	11.7.1.11. treeitem:set_hidden([bool])
	11.7.1.12. treeitem:set_len(len)
	11.7.1.13. treeitem:__tostring()
	11.7.1.14. treeitem.text
	11.7.1.15. treeitem.visible
	11.7.1.16. treeitem.generated
	11.7.1.17. treeitem.hidden
	11.7.1.18. treeitem.len

	11.8. Functions for handling packet data
	11.8.1. ByteArray
	11.8.1.1. ByteArray.new([hexbytes], [separator])
	11.8.1.2. ByteArray.tvb(name)
	11.8.1.3. bytearray:__concat(first, second)
	11.8.1.4. bytearray:__eq(first, second)
	11.8.1.5. bytearray:prepend(prepended)
	11.8.1.6. bytearray:append(appended)
	11.8.1.7. bytearray:set_size(size)
	11.8.1.8. bytearray:set_index(index, value)
	11.8.1.9. bytearray:get_index(index)
	11.8.1.10. bytearray:len()
	11.8.1.11. bytearray:subset(offset, length)
	11.8.1.12. bytearray:base64_decode()
	11.8.1.13. bytearray:raw([offset], [length])
	11.8.1.14. bytearray:tohex([lowercase], [separator])
	11.8.1.15. bytearray:__tostring()

	11.8.2. Tvb
	11.8.2.1. tvb:__tostring()
	11.8.2.2. tvb:reported_len()
	11.8.2.3. tvb:len()
	11.8.2.4. tvb:reported_length_remaining()
	11.8.2.5. tvb:bytes([offset], [length])
	11.8.2.6. tvb:offset()
	11.8.2.7. tvb:__call()
	11.8.2.8. tvb:range([offset], [length])
	11.8.2.9. tvb:raw([offset], [length])
	11.8.2.10. tvb:__eq()

	11.8.3. TvbRange
	11.8.3.1. TvbRange.tvb(range)
	11.8.3.2. tvbrange:uint()
	11.8.3.3. tvbrange:le_uint()
	11.8.3.4. tvbrange:uint64()
	11.8.3.5. tvbrange:le_uint64()
	11.8.3.6. tvbrange:int()
	11.8.3.7. tvbrange:le_int()
	11.8.3.8. tvbrange:int64()
	11.8.3.9. tvbrange:le_int64()
	11.8.3.10. tvbrange:float()
	11.8.3.11. tvbrange:le_float()
	11.8.3.12. tvbrange:ipv4()
	11.8.3.13. tvbrange:le_ipv4()
	11.8.3.14. tvbrange:ether()
	11.8.3.15. tvbrange:nstime([encoding])
	11.8.3.16. tvbrange:le_nstime()
	11.8.3.17. tvbrange:string([encoding])
	11.8.3.18. tvbrange:ustring()
	11.8.3.19. tvbrange:le_ustring()
	11.8.3.20. tvbrange:stringz([encoding])
	11.8.3.21. tvbrange:strsize([encoding])
	11.8.3.22. tvbrange:ustringz()
	11.8.3.23. tvbrange:le_ustringz()
	11.8.3.24. tvbrange:bytes([encoding])
	11.8.3.25. tvbrange:bitfield([position], [length])
	11.8.3.26. tvbrange:range([offset], [length])
	11.8.3.27. tvbrange:uncompress(name)
	11.8.3.28. tvbrange:len()
	11.8.3.29. tvbrange:offset()
	11.8.3.30. tvbrange:raw([offset], [length])
	11.8.3.31. tvbrange:__eq()
	11.8.3.32. tvbrange:__tostring()

	11.9. Custom file format reading/writing
	11.9.1. CaptureInfo
	11.9.1.1. captureinfo:__tostring()
	11.9.1.2. captureinfo.encap
	11.9.1.3. captureinfo.time_precision
	11.9.1.4. captureinfo.snapshot_length
	11.9.1.5. captureinfo.comment
	11.9.1.6. captureinfo.hardware
	11.9.1.7. captureinfo.os
	11.9.1.8. captureinfo.user_app
	11.9.1.9. captureinfo.hosts
	11.9.1.10. captureinfo.private_table

	11.9.2. CaptureInfoConst
	11.9.2.1. captureinfoconst:__tostring()
	11.9.2.2. captureinfoconst.type
	11.9.2.3. captureinfoconst.snapshot_length
	11.9.2.4. captureinfoconst.encap
	11.9.2.5. captureinfoconst.comment
	11.9.2.6. captureinfoconst.hardware
	11.9.2.7. captureinfoconst.os
	11.9.2.8. captureinfoconst.user_app
	11.9.2.9. captureinfoconst.hosts
	11.9.2.10. captureinfoconst.private_table

	11.9.3. File
	11.9.3.1. file:read()
	11.9.3.2. file:seek()
	11.9.3.3. file:lines()
	11.9.3.4. file:write()
	11.9.3.5. file:__tostring()
	11.9.3.6. file.compressed

	11.9.4. FileHandler
	11.9.4.1. FileHandler.new(name, shortname, description, type)
	11.9.4.2. filehandler:__tostring()
	11.9.4.3. filehandler.read_open
	11.9.4.4. filehandler.read
	11.9.4.5. filehandler.seek_read
	11.9.4.6. filehandler.read_close
	11.9.4.7. filehandler.seq_read_close
	11.9.4.8. filehandler.can_write_encap
	11.9.4.9. filehandler.write_open
	11.9.4.10. filehandler.write
	11.9.4.11. filehandler.write_finish
	11.9.4.12. filehandler.type
	11.9.4.13. filehandler.extensions
	11.9.4.14. filehandler.writing_must_seek
	11.9.4.15. filehandler.writes_name_resolution
	11.9.4.16. filehandler.supported_comment_types

	11.9.5. FrameInfo
	11.9.5.1. frameinfo:__tostring()
	11.9.5.2. frameinfo:read_data(file, length)
	11.9.5.3. frameinfo.time
	11.9.5.4. frameinfo.data
	11.9.5.5. frameinfo.rec_type
	11.9.5.6. frameinfo.flags
	11.9.5.7. frameinfo.captured_length
	11.9.5.8. frameinfo.original_length
	11.9.5.9. frameinfo.encap
	11.9.5.10. frameinfo.comment

	11.9.6. FrameInfoConst
	11.9.6.1. frameinfoconst:__tostring()
	11.9.6.2. frameinfoconst:write_data(file, [length])
	11.9.6.3. frameinfoconst.time
	11.9.6.4. frameinfoconst.data
	11.9.6.5. frameinfoconst.rec_type
	11.9.6.6. frameinfoconst.flags
	11.9.6.7. frameinfoconst.captured_length
	11.9.6.8. frameinfoconst.original_length
	11.9.6.9. frameinfoconst.encap
	11.9.6.10. frameinfoconst.comment

	11.9.7. Global Functions
	11.9.7.1. register_filehandler(filehandler)
	11.9.7.2. deregister_filehandler(filehandler)

	11.10. Directory handling functions
	11.10.1. Dir
	11.10.1.1. Dir.make(name)
	11.10.1.2. Dir.exists(name)
	11.10.1.3. Dir.remove(name)
	11.10.1.4. Dir.remove_all(name)
	11.10.1.5. Dir.open(pathname, [extension])
	11.10.1.6. Dir.personal_config_path([filename])
	11.10.1.7. Dir.global_config_path([filename])
	11.10.1.8. Dir.personal_plugins_path()
	11.10.1.9. Dir.global_plugins_path()
	11.10.1.10. dir:__call()
	11.10.1.11. dir:close()

	11.11. Utility Functions
	11.11.1. Global Functions
	11.11.1.1. get_version()
	11.11.1.2. set_plugin_info(table)
	11.11.1.3. format_date(timestamp)
	11.11.1.4. format_time(timestamp)
	11.11.1.5. report_failure(text)
	11.11.1.6. critical(…)
	11.11.1.7. warn(…)
	11.11.1.8. message(…)
	11.11.1.9. info(…)
	11.11.1.10. debug(…)
	11.11.1.11. loadfile(filename)
	11.11.1.12. dofile(filename)
	11.11.1.13. register_stat_cmd_arg(argument, [action])

	11.12. Handling 64-bit Integers
	11.12.1. Int64
	11.12.1.1. Int64.decode(string, [endian])
	11.12.1.2. Int64.new([value], [highvalue])
	11.12.1.3. Int64.max()
	11.12.1.4. Int64.min()
	11.12.1.5. Int64.fromhex(hex)
	11.12.1.6. int64:encode([endian])
	11.12.1.7. int64:__call()
	11.12.1.8. int64:tonumber()
	11.12.1.9. int64:tohex([numbytes])
	11.12.1.10. int64:higher()
	11.12.1.11. int64:lower()
	11.12.1.12. int64:__tostring()
	11.12.1.13. int64:__unm()
	11.12.1.14. int64:__add()
	11.12.1.15. int64:__sub()
	11.12.1.16. int64:__mul()
	11.12.1.17. int64:__div()
	11.12.1.18. int64:__mod()
	11.12.1.19. int64:__pow()
	11.12.1.20. int64:__eq()
	11.12.1.21. int64:__lt()
	11.12.1.22. int64:__le()
	11.12.1.23. int64:bnot()
	11.12.1.24. int64:band()
	11.12.1.25. int64:bor()
	11.12.1.26. int64:bxor()
	11.12.1.27. int64:lshift(numbits)
	11.12.1.28. int64:rshift(numbits)
	11.12.1.29. int64:arshift(numbits)
	11.12.1.30. int64:rol(numbits)
	11.12.1.31. int64:ror(numbits)
	11.12.1.32. int64:bswap()

	11.12.2. UInt64
	11.12.2.1. UInt64.decode(string, [endian])
	11.12.2.2. UInt64.new([value], [highvalue])
	11.12.2.3. UInt64.max()
	11.12.2.4. UInt64.min()
	11.12.2.5. UInt64.fromhex(hex)
	11.12.2.6. uint64:encode([endian])
	11.12.2.7. uint64:__call()
	11.12.2.8. uint64:tonumber()
	11.12.2.9. uint64:__tostring()
	11.12.2.10. uint64:tohex([numbytes])
	11.12.2.11. uint64:higher()
	11.12.2.12. uint64:lower()
	11.12.2.13. uint64:__unm()
	11.12.2.14. uint64:__add()
	11.12.2.15. uint64:__sub()
	11.12.2.16. uint64:__mul()
	11.12.2.17. uint64:__div()
	11.12.2.18. uint64:__mod()
	11.12.2.19. uint64:__pow()
	11.12.2.20. uint64:__eq()
	11.12.2.21. uint64:__lt()
	11.12.2.22. uint64:__le()
	11.12.2.23. uint64:bnot()
	11.12.2.24. uint64:band()
	11.12.2.25. uint64:bor()
	11.12.2.26. uint64:bxor()
	11.12.2.27. uint64:lshift(numbits)
	11.12.2.28. uint64:rshift(numbits)
	11.12.2.29. uint64:arshift(numbits)
	11.12.2.30. uint64:rol(numbits)
	11.12.2.31. uint64:ror(numbits)
	11.12.2.32. uint64:bswap()

	11.13. Binary encode/decode support
	11.13.1. Struct
	11.13.1.1. Struct.pack(format, value)
	11.13.1.2. Struct.unpack(format, struct, [begin])
	11.13.1.3. Struct.size(format)
	11.13.1.4. Struct.values(format)
	11.13.1.5. Struct.tohex(bytestring, [lowercase], [separator])
	11.13.1.6. Struct.fromhex(hexbytes, [separator])

	11.14. GLib Regular Expressions
	11.14.1. GRegex
	11.14.1.1. Notes
	11.14.1.2. GRegex.new(pattern)
	11.14.1.3. GRegex.flags([table])
	11.14.1.4. GRegex.compile_flags([table])
	11.14.1.5. GRegex.match_flags([table])
	11.14.1.6. GRegex.match(subject, pattern, [init], [cf], [ef])
	11.14.1.7. GRegex.find(subject, pattern, [init], [cf], [ef])
	11.14.1.8. GRegex.gmatch(subject, pattern, [init], [cf], [ef])
	11.14.1.9. GRegex.gsub(subject, pattern, [repl], [max], [cf], [ef])
	11.14.1.10. GRegex.split(subject, sep, [cf], [ef])
	11.14.1.11. GRegex.version()
	11.14.1.12. gregex:match(subject, [init], [ef])
	11.14.1.13. gregex:find(subject, [init], [ef])
	11.14.1.14. gregex:exec(subject, [init], [ef])
	11.14.1.15. gregex:dfa_exec(subject, [init], [ef])
	11.14.1.16. gregex:__tostring()

	Chapter 12. User Interface
	12.1. Introduction
	12.2. The Qt Application Framework
	12.2.1. Source Code Overview
	12.2.2. Coding Practices and Naming Conventions
	12.2.2.1. Names
	12.2.2.2. Dialogs
	12.2.2.3. Strings
	12.2.2.4. Mixing C and C++
	12.2.2.5. Internationalization and Translation

	12.2.3. Other Issues

	12.3. The GTK library
	12.3.1. GTK Version 2.x
	12.3.2. GTK Version 3.x
	12.3.3. Compatibility GTK versions
	12.3.4. GTK resources on the web

	12.4. GUI Reference documents
	12.5. Adding/Extending Dialogs
	12.6. Widget naming
	12.7. Common GTK programming pitfalls
	12.7.1. Usage of gtk_widget_show() / gtk_widget_show_all()

	Chapter 13. This Document’s License (GPL)

