

WebSPIRS ™
Implementor’s Guide

Document Version 3.0
WebSPIRS Version 3.0

WebSPIRS ™ Implementor’s Guide
Copyright 1996, 1995 © SilverPlatter International N.V.

All rights reserved.

The software described in this document is furnished under a license and may be used or copied only in accordance with
the terms of such license. Possession, use, duplication, or dissemination of the software described in this documentation
is authorized only pursuant to a valid written license from SilverPlatter Information, Inc.

SilverPlatter is a registered trademark of SilverPlatter International N.V.
Blat is in the public domain and was written by Pedro Mendes and Mark Neal at the University of Wales Aberystwyth
Linux has been placed under the GNU Public License.

Microsoft, MS-DOS, Microsoft CD-ROM Extensions, Microsoft Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

Netscape is a trademark of Netscape Communications Corporation.
NFS and Solaris are trademarks of Sun Microsystems, Inc.
PolyMake is a registered trademark of INTERSOLYV, Inc.

SCO is a trademark of The Santa Cruz Operation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

All other names, products, and services are trademarks or registered trademarks of their respective holders.

SilverPlatter Information, Inc.

100 River Ridge Drive 10 Barley Mow Passage

Norwood, MA 02062-5062, USA Chiswick, London, W4 4PH, England
TEL: 617-769-2599 TEL: 081-995-8242

FAX: 617-769-8763 FAX: 081-995-5159

Email address: staffi@silverplatter.com
Internet address: http://www.silverplatter.com

il SilverPlatter Proprietary

Table of Contents

Introduction

vil

Intended Audience

vil

Document Structure

vil

Related Documentation

Conventions

Reader’s Comments

viit
viit

viit

Chapter 1 - Overview 1-1
WebSPIRS Process 1-1
The cgibaby Process 1-2
The cgichild Process 1-2
The cgiadult Process 1-2
Log Files 1-3
Chapter 2 - Installing and Configuring 2-1
Preparing to Install WebSPIRS 2-1
Installing WebSPIRS 2-1
Linux 2-2
Solaris 2-3
Windows NT 2-5
Configuring WebSPIRS 2-6
The webspirs.cfg and cgibaby.cfg Files 2-6
The erlclnt.cfg File 2-7
The .htaccess File 2-8
The mime.types File 2-8
Opening WebSPIRS On Your Browser 2-8
Chapter 3 - Tutorial for Customizing Templates 3-1
What are the WebSPIRS templates? 3-1
What do the encoded macros do? 3-1
Why Customize a Template? 3-1
How can I edit a template? 3-2
The Editable and Processed Template States 3-2
The FORM in WebSPIRS 3-4
What kinds of customizations can I make? 3-4
Bypassing the Login page 3-4
Preselecting Databases 3-5
Displaying Specific Fields 3-5
Changing the Records Display Default Number 3-6
Changing a Template Title 3-6

SilverPlatter Proprietary

iii

Changing the Graphical Interface 3-6
Creating a Table 3-7
Controlling the Flow of Pages 3-8
WebSPIRS Templates 3-9
Complete Pages 3-9
Large Fragments 3-11
Utility Fragments 3-11
Chapter 4 - Creating and Using Macros 4-1
Understanding the Macros 4-1
Nested Macros 4-2
SilverPlatter Macros 4-2
Interface-Specific Variables 4-2
Administration Macros 4-6
General Database Macros 4-7
Text Display Macros 4-9
Search Macros 4-13
Automatic Subject Lookup Macros 4-14
Field-Specific Index Macros 4-14
Field List Macro 4-16
Thesaurus Term Macros 4-16
Guide Keyword Macros 4-19
Marked Records 4-20
Miscellaneous Macro Support 4-21
Adding Macros 4-24
C++ Language Implementation 4-25
Useful Services Available to the Macro 4-28
Chapter 5 - WebSPIRS Class Library 5-1
Class cgi_Config 5-2
Public Member Functions 5-2
Class dxp_to_html 5-5
Public Member Functions 5-5
Class erlAdmin 5-6
Protected Member Functions 5-6
Class erlAdmin_DBInfo 5-7
Public Member Functions 5-7
Class erlAdmin_UserInfo 5-8
Public Member Functions 5-8
Class sgml Field 5-10
Public Member Functions 5-10
Class www_Admin 5-11
Public Member Functions 5-11
Class www_Alert 5-12
Public Member Functions 5-12
Class www_Arguments 5-13

v SilverPlatter Proprietary

Public Methods

5-13

Class www_Database

Public Member Functions

5-15
5-15

HTML Expansion Methods

5-15

Class www_Environment

Public Member Functions

5-18
5-18

Class www_ERLConnection

Public Member Functions

5-20
5-20

Protected Member Functions

5-22

Class www_Field

Public Member Functions

5-24
5-24

Class www_FSI

Public Member Functions

5-25
5-25

Class www_Guide

Public Member Functions

5-27
5-27

Class www_HTML _Helper

Public Member Functions

5-28
5-28

Macro Expansion Methods

5-29

Utility Methods

5-29

Utility Methods for Generating HTML

5-31

Table of Helpers Methods

5-32

Protected Methods

5-33

Class www Macro

Public Member Functions

5-34
5-34

Class www_MacroCaller

Public Member Functions

5-36
5-36

Class www Record

Public Member Functions

5-37
5-37

Record Extraction Methods

5-37

Class www_Request

Public Member Functions

5-41
5-41

Class www_Search

Public Member Functions

5-44
5.44

Class www_Server

Public Member Functions

5-46
5-46

Class www_Template

Rules Used in www_TemplateExpander:Lookup to Turn Macros into HTML
Public Member Functions

5-48
5-48

5-48

Class www_User

Public Member Functions

5-49
5-49

Class www_Wild

Public Member Functions

5-51
5-51

SilverPlatter Proprietary

Chapter 6 - Frequently Asked Questions

Glossary

vi SilverPlatter Proprietary

6-1
G-1

Introduction

WebSPIRS is SilverPlatter’s Information Retrieval System for the World Wide Web (WWW). It is a common
gateway interface (CGI) application which allows any forms-capable browser, such as Netscape, to search
SilverPlatter (SP) Electronic Reference Library (ERL) databases available over the Internet.

Intended Audience

This guide has two instructional parts and the audience for each can be different:

e Tutorial for Customizing Templates. Chapter 2 of the guide provides instructions for customizing
WebSPIRS interface forms, which result from the processing of templates created with HyperText
Markup Language (HTML). If you have access to a web browser, such as Netscape or Mosaic, you can
use these instructions to customize the templates to your own specific database needs.

¢ Creating and Using Macros. Chapter 3 of the guide provides instructions for creating more macros than
are provided by SilverPlatter. If you want to implement a more complex scheme for searching or if you
have some other need which involves creating new SP macros, you should have knowledge of the C++
programming language. You will also need code libraries and documentation, which can be obtained by
participating in SilverPlatter's WebSPIRS Developer Program. For additional information contact Yogen
Pathak, Software Development Manager, by electronic mail at YogenP@SilverPlatter.com .

Document Structure

This document contains the following:
Chapter 1, Overview, provides an introduction to the SilverPlatter WebSPIRS technology.

Chapter 2, Installing and Configuring WebSPIRS, provides instructions for installing and configuring
WebSPIRS on the Linux, Solaris, and NT platforms.

Chapter 3, Tutorial for Customizing Templates, provides instructions and examples for customizing the
WebSPIRS templates, and a description of ecach WebSPIRS template.

Chapter 4, Creating and Using Macros, provides instructions and examples for creating new SilverPlatter
macros and describes each of the existing macros.

Chapter 5, WebSPIRS Class Library, contains a hierarchical class drawing of the WebSPIRS classes and
provides detailed information for each class and its methods.

Chapter 6, Frequently Asked Questions, contains frequently asked questions about WebSPIRS and the
answers to those questions.

The Glossary defines some of the terms used in this guide.

The Index helps you find information contained in this guide.

SilverPlatter Proprietary vii

Related Documentation

You should have access to the following documentation:

e SilverPlatter CORE Reference Manual, Version 2.0
e SilverPlatter CORE Wrapper Reference Manua, Version 1.0

Conventions

The conventions used in this guide are described in the following table:

Convention Description

boldface text Boldface text represents WebSPIRS class names, member
functions, commands, and format specifiers. Within syntax
descriptions, boldface type indicates text that must be entered
exactly as shown.

italic text Words in italics indicate placeholders for information you must
supply, such as a value for a parameter. Italics are also used for
book titles.

underlined text Underlined text is used for emphasis.

Monospaced text Monospaced type indicates code examples and text as it appears

in a program or on a screen. It is also used to represent file
names, templates, and SilverPlatter macros; for example,
wwwdb . hpp, search.htm, and sp.dbid.p.

) In graphical representations, an arrow with a solid line indicates
direct inheritance from one class to another.

_____________ > In graphical representations, an arrow with a broken line
indicates a relationship between two classes.

Reader’s Comments

We welcome and encourage comments on the usability of this manual. Please send any comments or
suggestions for improvement to the following electronic mail address:

ElizK@SilverPlatter.com

8 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Overview

Chapter 1 - Overview

WebSPIRS provides access to SilverPlatter ERL databases using a Web browser. It is a client that talks to a
server. Forms created from templates in HTML format retrieve the ERL data using WebSPIRS. You can use
the WebSPIRS templates as models to create your own interface forms, or you can make a copy of a template
and modify it to fit your needs. See Chapter 3 for details.

The source templates for the WebSPIRS interface forms depend upon common gateway interface (CGI)
scripts which allow web servers to interact with external processes. There is a context-specific template for
each state of the user's interaction with the ERL server.

The following major features are supported by WebSPIRS:
e Login

e Database selection

e Search

e Index

¢ Record display

e Marked records

e Thesaurus

¢ Automatic subject lookup

¢ Database-specific help

e Page-specific help and help on search methos.

Because WebSPIRS works with the ERL Technology, it supports only the features provided by the most
current version of ERL.

WebSPIRS Process

WebSPIRS consists of three internal processes which move information from the web browser to the ERL
server and back again. These three processes are:

e cgibaby
o cgichild
o cgiadult

SilverPlatter Proprietary 1-3

Overview WebSPIRS Implementor’s Guide

The cgibaby Process

The cgibaby process is launched by the HTTP server. It reads the HTTP request from its stdin. To this it
attaches the following:

e Its environment variables. These provide it with information such as REMOTE HOST,
SERVER NAME, and SCRIPT NAME.

e Its command line arguments
¢ A unique pipe port in which it expects to find the completed HTML form.

The cgibaby process writes a request to a pipe that is connected to the cgichild dispatcher process. It waits
for the HTML form to appear in its pipe, and it copies the form to stdout . It then exits and the form goes
from the HTTP server to the Web browser.

The cgichild Process

The cgichild process dispatches HT TP requests to the appropriate ERL connection (cgiadult). ERL must be
running for WebSPIRS to operate. On startup, cgichild creates a pipe for cgibaby to write to and waits for
requests to come in. On receiving a request it goes through the following steps:

1. It looks for a "user number" (SP macro, sp.usernumber.p).

2. If none is found, a new user is assumed and a new user number is assigned and attached to the
request. (SP macros--sp . username and sp.password).

3. If one is found, it checks a table to see if the user's user name and password are known, and if so,
they are attached to the request.

4. If the user is not currently attached to a connection (this is determined by the same table), the user is
assigned the least recently used connection.

5. The request is then written to the named pipe associated with the connection.

6. cgichild goes back to waiting for a request.

The cgiadult Process

The cgiadult process manages a connection with ERL servers. It interprets the HTTP request, loads and
interprets the HTML template, builds the output HTML form, and writes the form to the output pipe assigned
by cgibaby. It attaches its environment variables and command line arguments to the incoming request.
This allows it to be used as a standalone gateway or a standalone debuggable module which is convenient for
working on new macros.

1-2 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Overview

The following steps show the flow of information in the WebSPIRS process:

WebSPIRS Process
web browser
TCP/IP
HTTP web server
(ofe]|
cgibaby e
TCP pipes
cgichild
cgiadult |
cgiadult
DXP
ERL server |
ERL server

Log Files

1.The user of the Web browser fills out the
form to get data.

2.The HTML request goes to the HTTP Web
server, and a cgibaby process is launched.

3.The CGI request is read by cgibaby.

4.The cgibaby process sends the CGI
request data to the cgichild process
through a TCP pipe.

5.The cgichild process sends the request to
cgiadult using the TCP pipe associated
with the connection.

6.Data eXchange Protocol (DXP) messages
go between a cgiadult process and the
ERL server.

7.The HTML template stored on the Web
server is filled with DXP data after
cgiadult reads it.

8.The cgiadult completes the page, sends it
back to cgibaby, and the CGI script ends.
The Web server reads the result and
forwards it back to the Web client where it
is displayed to the user.

Various logs are written as the cgibaby, cgichild , and cgiadult processes take the information from the web
browser through WebSPIRS and back again. These files will only appear if debug= in the

webspirs.cfg

file is set to something over than zero. The logs written are as follows:

e wwwbaby. req is the last request that a cgibaby received. This includes the add-on environment
variables. It may be used to directly run cgibaby. In the following command, cgibaby reads the request

from the wwwbaby.req file.

cgibaby READ FROM=wwwbaby.req

Note that for this to work fully, a cgichild process must be up and running. Also, the request will not
contain a username and password; these must be added manually.

SilverPlatter Proprietary

1-3

Overview WebSPIRS Implementor’s Guide

e webuser. logis alog of users, IP addresses, and Host names (if available). It is written by cgibaby .
Note: This file is not updated or cleaned automatically. You must erase information yourself.

e wwwlast.reqis the last request received by a cgiadult. It includes the username and password and
will function with ERL. It may be fed directly into cgiadult or cgibaby. In the following command,
cgiadult reads the reuqgest from the wwwlast.req file:

cgiadult READ FROM=wwwlast.req

e webreq.log isalog of all requests that have come in since the last time the file was erased. Requests
can be extracted from here using an editor and then fed into cgiadult or cgibaby as above.

o wwwiorm.log is alog of all the forms written to WebSPIRS. It is useful for determining what an
incomplete connection produced.

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Installing and Configuring

Chapter 2 - Installing and Configuring

This chapter provides instructions for installing WebSPIRS on the Linux, Solaris, and NT platforms. It also
includes instructions for editing several files to configure the WebSPIRS software

Preparing to Install WebSPIRS

Before you install, you will need the following software:
o The WebSPIRS client file package

You can download the appropriate WebSPIRS package file for your platform from the SilverPlatter
ftp site (ftp://ftp.silverplatter.com/software/erl-clients/). The name of the
file will probably be something like ws 30b 9. tgz, but for the purposes of this document it is called
simply webspirs; for example, webspirs.tgz for Linux, webspirs.pkg for Solaris, and
webspirs.exe for NT.

e A Hypertext Transfer Protocol (HTTP) server

If you do not already have a HTTP server, install, configure, and start a server on your machine. You
can download a free server from the Internet:

= The Apache server (http://www.apache.org/) supports Linux and Solaris platforms. Look in
their binaries directory (http://www.apache.org/dist/binaries/) for platform-
specific files.

= The WebSite server (http://software.ora.com/) from O'Reilly & Associates is a free NT
Web server. Also for use with NTis a free server from EMWAC (European Microsoft Windows NT
Academic Centre) at http://emwac.ed.ac.uk/.

e A compatible Web browser for testing

Web browsers used at SilverPlatter include Netscape and Lynx. You can download the Netscape
browser from Netscape (http://cgi.netscape.com/).

Installing WebSPIRS

This section provides instructions for installing WebSPIRS on the Linux, Solaris, and NT platforms. If you
have a previous version of WebSPIRS installed on your system and you want to save changes you have made
to templates and other files, do the following:

1. Backup anything you need to save including any configuration files (. cfg).
2. Remove the old files.

3. Install the new files using the instructions described in this section.

4

Integrate your saved files with the new files.

SilverPlatter Proprietary 2-1

Installing and Configuring WebSPIRS Implementor’s Guide

Linux

Before you install WebSPIRS on a Linux platform, you should have the following minimum hardware
requirements:

¢ 386DX/33 MHz IBM-compatible PC

e 16 MB RAM (1 to 10 simultancous users). Add 1.5 MB per user over 10 users.
¢ 4 MB free hard disk space

e Linux Versionl.2.13+ (RedHat recommended)

e Standard video

o TCP/IP network protocol

¢ ERL server (separate machine)

To install WebSPIRS on Linux, complete the following steps:
1. Login as root on your machine.
2. Change to the directory to which you downloaded the webspirs. tgz files.

3. Ifyou are running a previous version of WebSPIRS, back up anything you need to save and remove
the old files.

4. Either run the slackware pkgtool on the webspirs. tgz file or manually install WebSPIRS.

Installing with the pkgtool

pkgtool modifies the /etc/rc3.d/rc. local file to start WebSPIRS at bootup and unpacks the
WebSPIRS files into the following directory structure:
/usr/local/etc/webspirs/bin
/usr/local/etc/webspirs/url/doc
/usr/local/etc/webspirs/url/images
/usr/local/etc/webspirs/template
/usr/local/etc/webspirs/template/help
pkgtool also creates a symbolic link to webspird.cgi and webspirs. cgi inthe
fusr/local/etc/httpd/cgi-bin directory.

Installing Manually

If you do not have the slackware pkgtool, you can manually install WebSPIRS:

cd /

tar -xvzf /<full path>/webspirs.tgz
vi /install/doinst.sh
/install/doinst.sh (execute doinst.sh)
rm -r /install

Note that the install directory can be removed after execution. When you edit the doinst. sh file, edit the
following lines:

e Change WEBSPIRSUSER= to nobody
¢ (Change WEBSPIRSGROUP= to nobody

e Change Change CGIBIN= and DOCDIR= if your web server is in a different location.

222 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Installing and Configuring

5. As described in the “Configuring WebSPIRS” section, you need to change the WebSPIRS default
configuration settings in the webspirs. cfqg file and the ERL server address information in the
erlclnt.cfgfile.

6. Start the WebSPIRS client from an XTerm to record any debug information in the event of a problem:

su nobody -c¢ "/usr/local/etc/webspirs/bin/webspird.cgi restart"

Or reboot your machine to start up the WebSPIRS processes automatically.
At this point, an end user can point a Web browser at the WebSPIRS client and perform searches. See the
section, “Opening WebSPIRS On Your Browser.”

Solaris

Before you install WebSPIRS on a Solaris platform, you should have the following minimum hardware
requirements:

e Sun SPARCstation 10

e 32 MB RAM (1 to 10 simultancous users). Add 1.5 MB per user over 10 users.
e 3 MB free hard disk space

e Sun Solaris Version 2.3+

e Standard video

o TCP/IP network protocol

¢ ERL server (separate machine)

To install WebSPIRS on Solaris, complete the following steps:
1. Login as root on your machine.
2. Change to the directory to which you downloaded the webspirs.pkg files.

3. Ifyou are running a previous version of WebSPIRS, back up anything you need to save and remove
the old files using pkgrm.

4. Runpkgadd onthe webspirs.pkg file.
pkgadd -d ./webspirs.pkg

pkgadd modifies the /etc/rc3.d/rc. local file to start WebSPIRS at bootup and unpacks the
WebSPIRS files into the following directory structure:

/opt/webspirs/bin

/opt/webspirs/url/doc

/opt/webspirs/url/images

/opt/webspirs/template

/opt/webspirs/template/help

pkgadd also places the webspirs link in the /opt/httpd/cgi-bin directory.

SilverPlatter Proprietary 2.3

Installing and Configuring WebSPIRS Implementor’s Guide

The installation script will ask a series of questions:
e What is the base directory?
The default is /opt/webspirs/
¢ What is the base directory for your web server documents?
/usr/local/etc/httpd/htdocs/
e What is the base directory for your web server and cgi scripts?
usr/local/etc/httpd/cgi-bin/
¢ Enter a valid User ID. Example: nobody.
Type ? for a list of values.
e Enter a valid Group ID. Example: nobody.
Type ? for a list of values.

5. As described in the “Configuring WebSPIRS” section, edit the connections information in the
webspirs.cfg file and the ERL server address information in the erlclnt. cfg file.

6. Start the WebSPIRS client from an XTerm to record the debug information
su nobody -c "/opt/webspirs/bin/webspird.cgi restart"

Or reboot your machine to start up the WebSPIRS processes automatically.

At this point, an end user can point a Web browser at the WebSPIRS client and perform searches. See the
section, “Opening WebSPIRS On Your Browser.”

2-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Installing and Configuring

Windows NT

Before you install WebSPIRS on a Windows NT platform, you should have the following minimum hardware
requirements:

486/66 MHz IBM-compatible PC

32 MB RAM (1 to 10 simultaneous users). Add 2 MB per user over 10 users.

Windows NT Workstation or Server Version 3.51+

TCP/IP network protocol

ERL server (separate machine)

To install WebSPIRS on Windows NT, complete the following steps:

1.
2.
3.

10.

11.

12.

Login as Administrator onyour machine.
Change to the directory to which you downloaded the files.

Execute the webspirs. exe file and then respond to the choices presented to you by the
InstallShield Wizard, clicking Next to move through the script.

Read the Welcome screen message.

On the Setup Type screen choose a radio button for the Typical, Compact, or Custom sctup type
(Typical is the default). On this screen the directory where the files will be installed is shown. You
can click Browse to select another choice.

On the Select Program Folder screen you can change the name from WebSPIRS to something else if
you wish.

On the HTDOCS Directory screen click Browse to determine and then insert the location of your
HTDOCS directory.

On the CGI-BIN Directory screen click Browse to determine and then insert the location of your
CGI-BIN directory. Note that if you are using the WebSite server, this directory is called CGI-DOS.

On the CGI Executable Type page, select the type of executable files your HTTP server requires.
Check the server documentation if you are not sure. Choose either the batch (BAT) or command
(.CMD) type.

On the Start Copying Files screen, your current settings are shown. If you are not satisfied with the
settings, you can click the Back button to go back and make changes. After you click Next and the
files copy, you will see a WebSPIRS Common Group of icons appear and another screen where you
can access the release notes by clicking Finish.

Click the WebSPIRS icon in the WebSPIRS Common Group. A WebSPIRS MS-DOS window will
appear displaying the message, "WebSPIRS started." Minimize this window.

Go to your browser and type in the URL address. See the section, “Opening WebSPIRS On Your
Browser.”

SilverPlatter Proprietary 2-5

Installing and Configuring WebSPIRS Implementor’s Guide

Configuring WebSPIRS

Several files must be edited in order to configure WebSPIRS.

The webspirs.cfg and cgibaby.cfg Files

The /usr/local/etc/webspirs/bin/webspirs.cfg file contains several configurable variables
that affect the timing and connections in WebSPIRS.

Connections

Decide how many connections you want to make available through each copy of WebSPIRS and edit the
following lines of the webspirs. cfqg file (defaults are shown):

[WWW.DISPATCHER]

number of connections = 10 /* maximum number of cgiadult connections spawned.*/
[MM]

VM REQUIRED=20000000

VM DESIRED=20000000

Allow 2MB of memory for each connection.

Socket Port Number

Check the socket number in both the webspirs. cfg file and the cgibaby. cfg file. The
cgibaby. cfg file's port number must match the webspirs. cfg file's port number. The cgibaby process
finds the cgichild process by looking at the socket number. Note in the following line that the socket number
is "6789."

[WWW]

request name 16789

If you are running two versions of WebSPIRS on the same machine, you must change the socket number.

Debug Value

To capture debug information when troubles occur, you must edit the webspirs. cfg file and change the
line DEBUG=0 to DEBUG=1.

Mail Activation

WebSPIRS provides the capability to mail search results records. However, this is a site-dependent function,
and it is the responsibility of each site's WebSPIRS administrator to create a mail script and set the script in
the webspirs. cfg file. Your platform must have a mail utility that can run on a command line and mail a
file. You must name the script spmail (or spmail.bat for Windows). Here is a sample script for the
Linux platform. This script deletes the file specified after it mails it:

mail $2 <$1

rm $1
You must change the script to an executable if it is a shell script. Set the executable permission as follows:

chmod u+x spmail

When the command is run by WebSPIRS, it is invoked with two parameters. The first is the filename of the
text to mail, and the second is the Email address filled in by the user.

2-6 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Installing and Configuring

If you are using the NT platform, you can download a copy of the Blat utility
(http://gepasi.dbs.aber.ac.uk/softw/blat.html) for NT electronic mail. Put Blat and its
.d11 filesinthe bin directory along with the WebSPIRS executables. Check the Blat documentation and
be sure to set it up properly so it can use your mail server. Here is a sample batch file (. bat) for the NT
platform:

blat %1 -t %2 -s "WebSpirs Results"

del %1
After creating either of the above scripts, put it in the bin directory. Then set the script in the
webspirs.cfgfile:

sp.mailcmd="1"

After the sp.mailcmd variable is set to " 1" in the webspirs. cfg file, you will see a "Mail" button on
the Search page. Clicking this button will access the Mail Records page.

The ericint.cfg File

The configuration file, /usr/local/etc/webspirs/bin/erlclnt. cfg, helps the WebSPIRS client
establish the network connection to the ERL server. It contains the port information, protocol information,
and the server identifier and address to which the workstation should connect. You can point to multiple
servers by adding "server_addrr=" lines, where "n" is an incremental number.

Sample erlclnt. cfg file:

/* Creation date : Fr Nov 18 15:45:54 EST 1995
/* IP Address : 192.80.71.114
server addrl = /2/192.80.71.114/416

server addrn =

The server address entry (server addrl) has meaning as described below:
e 2'indicates a TCP/IP protocol connection.

e '192.80.71.114" isthe ERL server's IP address (a machine name such as
‘skutter3.london.silverplatter.com' can also be used here).

e '416'1is the port number assigned to all ERL communications traffic.

Insert the IP address or machine name of your ERL server in place of the default value.
Edit the ERL server address in the er1clnt. cfg file as shown below:

1. Openthe erlclnt.cfg file using a text editor.
2. Modify the following TCP/IP address to match the address of your server.
server addrl = /2/192.80.71.114/416

If you have more than one server, create a line for each server, incrementing the » with each one:

/2/192.80.71.114/416

server addrl
server addrn

3. Savethe erlclnt.cfg file in text-only format.

SilverPlatter Proprietary 2-7

Installing and Configuring WebSPIRS Implementor’s Guide

The .htaccess File

It is important to restrict access to WebSPIRS by creating a .htaccess restriction file. To create this file,
complete the following steps:

1. Mimic the following example file:

RAuthUserFile /dev/null
AuthGroupFile /dev/null
AuthName InternalOnly
AuthType Basic

<Limit GET>

order deny,allow

deny from all

allow from silverplatter.com
fallow from 192.80.71
</Limit>

2. Add an "allow" line with the name or the IP address for only those domains you wish to have access. For
example, you can replace the silverplatter.comdomain with your own domain in the line
"allow from silverplatter.com." Only allowed domains can access the WebSPIRS files. Note
that the silverplatter. com domain has been allowed and the 192.80. 71 IP address has been
commented out in the above sample . htaccess file.

3. Putthe .htaccess restriction file in the cgi-bin directory.

The mime.types File

You should also edit the mime . types file so that WebSPIRS can recognize files with both the .html and
.htm file extensions. You will find this file in the /usr/local/etc/httpd/conf directory. Edit the
following line in that file:

text/html html
So that it reads:
text/html html htm

Opening WebSPIRS On Your Browser

For the WebSPIRS ERL gateway client to be usable, the WebSPIRS process must be running and an end user
must have a Web browser pointed at the WebSPIRS gateway.
1. Enter the following destination in your Web Browser:
1. http://your machine name/webspirs/webspirs.htm

where your machine name is the IP address or machine name of the Web server running
WebSPIRS. Note that you may use "localhost" if your browser and server are running on the

same machine.

2. Enter your username and password.

Use the available on-line help for assistance in formulating search statements and displaying results.

2-8 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Index

SilverPlatter Proprietary Index-9

WebSPIRS Implementor’s Guide Tutorial for Customizing Templates

Chapter 3 - Tutorial for Customizing Templates

This tutorial for customizing WebSPIRS templates answers the following questions:
¢ What are the WebSPIRS templates?

e What do the encoded macros do?

e Why customize a template?

e How can I edit a template?

¢ What kinds of customizations can I make?

This chapter also includes a diagram of the main WebSPIRS templates and a description of each template and
fragment.

What are the WebSPIRS templates?

The WebSPIRS templates generate the interface pages which the user sees. They are composed of HTML
formatted text encoded with a macro language understood by WebSPIRS. The templates can be found in the
/webspirs/template directory. When a page is requested, WebSPIRS parses the requested template
(.htm file) and the macros expand. The page is then fed back to the user. The templates are processed into
forms by the cgiadult process, which is described in Chapter 1, “Overview.”

What do the encoded macros do?

The macros encoded in the templates contain the contents of the web forms, log the user in to ERL, and
perform such tasks as opening and searching databases. These predefined macros are preceded by the
[SP_MACRO] tag and are followed by the [/SP MACRO] tag.

Following is an example of a macro used in the database. htm template, which inserts a list of databases
with checkboxes preceding the title of each database:

[SP_MACRO] sp.avail.dbs.foreach normalfile="dblitmck.htm"
titlefile="dblttlck.htm" [/SP_MACRO]

Before customizing or creating new templates, you should understand both the existing templates and the
macros encoded in them. A diagram showing the flow of the WebSPIRS templates and a description of each
template is provided in the section, “WebSPIRS Templates.” For more details on the SilverPlatter macros
and a description of each macro, see the section, “Understanding the Macros™ in Chapter 4.

Why Customize a Template?

There are many possible reasons for customizing a template. You could customize a template to make it more
specific to an often-used database. For example, if you always use the ERIC database and often search
identical fields, you could make modifications to eliminate unnecessary steps. You could bypass the Login
and Database pages and create a new Search form entitled, "Search ERIC," which displays after the user logs
in. You can edit the search.htm template (the template that allows the user to create Boolean searches) to
create the Search ERIC form. You can further customize the template so that the form is limited to searching
specific fields, such as author (AU) and title (TT).

You can also personalize the interface by adding your company's name, logo, and other identifying
information. You can even add hyperlinks to provide additional in-depth marketing information if you wish.
By using the head.htmand foot . htm templates you can create a consistent look for each page. You can
add information such as graphics and logos at the beginning or end of each page, and you can select a
consistent background color or graphic for the page.

SilverPlatter Proprietary 3-1

Tutorial for Customizing Templates WebSPIRS Implementor’s Guide

How can I edit a template?

You can edit an existing template to create a new template. The templates are created in HTML, and you
should have some familiarity with HTML before you begin. The Library of Congress maintains a web page
(http://lcweb.loc.gov/global/internet/dev.html) of Internet resources which can help you get
started. You will need a text editor to make the changes to the template files. You can edit templates using
any text editor on any platform. Two WebSPIRS directories contain the files you will need:

e bin
e templates

In the bin directory, you will find a file called webspirs.cfg. Edit this file so that the path of
"template _directory" is the same as the directory location of the templates on your system. The default is
. /template, which should work on most installations.

After you have created a new template, be sure it is in the same directory as the other templates. The
head.htm template has variables for standard template names. You may change these variables to other
names. See the explanation of macro variables in the section “Understanding the Macros™ in Chapter 4.

The Editable and Processed Template States

Before a template is processed into the source for a Web browser, it can be edited. Following is an example of
the editable 1ogin.htm template, which will be processed into the WebSPIRS login page. Note the
SilverPlatter macro tags:

<!-- Main page: Login prompt -->
[SP_MACRO]sp.assign reset="yes" macro="sp.template description" value="Login to
WebSPIRS" [/SP_MACRO]

[SP_MACRO]sp.include filename=sp.form.head.p[[/SP ~MACRO]

<H1><IMG SRC="[SP_MACRO]sp.webspirs.imagedir| [/SP ~MACRO]webabout.gif"

ALT="Welcome to " align=center> <IMG SRC="[SP MACRO]sp.webspirs.imagedir[/SP MACRO]

webspirs.gif" ALT="WebSPIRS" align=center></H1l>

[SP_MACRO]sp.include filename="news.htm" /SP_MACRO]

<!-- If error message is set, show it here -->
[sp macro]lsp.include interpret="yes"
type="STRING" leftvalue="" condition="NE" rightvalue="sp.login error"

inclusion=[sp block]
<hr size=3>
<img align=left src="[sp macrolsp.webspirs.imagedir[/sp macrol]/error.gii
An Error has occurred:

<i>[SP_MACRO]sp.login error[/SP_MACRO]</i>

<hr size=3>
[/sp block]
[/sp macro]
<FORM [SP_MACRO]sp.include filename="action.htm"[/SP_MACRO]>
<h2>Login:</h2>
<INPUT TYPE="hidden" NAME="sp.nextform" VALUE="[SP MACRO]sp.nextform| /SP _MACRO] ">
<P>User name: <INPUT TYPE="text" NAME="sp.username" SIZE="31" MAXLENGTH="31"
VALUE="[SP_MACRO]sp.username.suggest| /SP_MACRO]"

Password: <INPUT TYPE="password" NAME="sp.password" SIZE="31" MAXLENGTH="31"
VALUE="[SP_MACRO] sp.password.suggest[/SP _MACRO]">
<INPUT TYPE="submit" NAME="submit" VALUE="Login"> <INPUT TYPE="reset" NAME=""
VALUE="Reset"></p>
</FORM>
[SP_MACRO] sp.include filename=sp.form.foot.p[/SP_MACRO]

3-2 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Tutorial for Customizing Templates

The WebSPIRS code reads the editable template and it becomes the source for the Web browser. For example,
when WebSPIRS processes the following macro:

[SP_MACRO]sp.assign reset="yes" macro="sp.template description" value="Login to
WebSPIRS"[/SP_MACRO]

the macro sets the value of the variable sp . tempate description. The head.htm template uses that
value to fill in the page title, and the foot . htm template uses the value to fill in the page name. Then in the
processed template it becomes

<TITLE>WebSPIRS: Login to WebSPIRS</TITLE>

Following is the complete processed template:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 2//EN">
<HTML>
<HEAD>
<TITLE>WebSPIRS: Login to WebSPIRS</TITLE>
</HEAD>
<BODY BACKGROUND="/webspirs/doc/paper.jpg">
<Hl>Welcome to </H1l>
<P>Login:</P>
<FORM METHOD="POST" ACTION="http://nova.silverplatter.com/cgi-bin/webspirs.cgi">
<INPUT TYPE="HIDDEN" NAME="DEFAULT.SP.FORM.HEAD.P" VALUE="head.htm">
<INPUT TYPE="HIDDEN" NAME="DEFAULT.SP.FORM.FOOT.P" VALUE="foot.htm">
<INPUT TYPE="HIDDEN" NAME="SP.USERNUMBER.P" VALUE="8">
<INPUT TYPE="HIDDEN" NAME="SP.FORM.SEARCH.P" VALUE="search.htm">
<INPUT TYPE="HIDDEN" NAME="SP.FORM.TOP.P" VALUE="top.htm">
<INPUT TYPE="HIDDEN" NAME="SP.THISFORM" VALUE="login.htm">
<INPUT TYPE="hidden" NAME="sp.nextform" VALUE="top.htm">
<P>User name: <INPUT TYPE="text" NAME="sp.username" SIZE="16" MAXLENGTH="16"
VALUE="guest">

Password: <INPUT TYPE="password" NAME="sp.password" SIZE="16" MAXLENGTH="1l6"
VALUE="guest">
<P><INPUT TYPE="submit" NAME="submit" VALUE="Login"> <INPUT TYPE="reset" NAME=""
VALUE="Reset">
</FORM>
<HR>
<ADDRESS>

Copyright 1996, SilverPlatter International NV,
WebSPIRSVersion 3.0

Send your comments to
Web3SPIRS@SilverPlatter.com,
referencing "Login to WebSPIRS".
</ADDRESS>
</BODY>
</HTML>

SilverPlatter Proprietary 3-3

Tutorial for Customizing Templates WebSPIRS Implementor’s Guide

The FORM in WebSPIRS

In the two states of the WebSPIRS login template shown above, you will see <FORM> tags. In WebSPIRS the
action.htm file is included in the template by the sp . include macro. It generates the <FORM
ACTION=...> data to link the template back to WebSPIRS.

<FORM [SP_MACRO]sp.include filename="action.htm"[/SP_MACRO]>

When the form's submit button is clicked by the user, the form is processed and a request is submitted to the
web server. A form has an ACTION and METHOD parameter. The ACTION parameter specifies which
uniform resource locator (URL) the form data should be sent to for further processing. In the above example
from the editable template, the METHOD="POST" statement is not visible; it is contained in the
action.htmfile:

METHOD="POST" ACTION="http://[SP_MACRO]server name[/SP_MACRO]
[SP_MACRO]script_name[/SP_MACRO]"

It becomes visible in the processed template state. The POST method formats the data and sends the form
data as one long text string. It calls for a URL, which is an executable program in the cgi-bin directory.
When the user clicks on the submit button, the FORM details are written out into a file (wwwlast. req) and
the ACTION URL is called.

Note: Changing action. htm is not recommended.

What kinds of customizations can I make?

This section will help you perform the following tasks. Note that you are not limited to these customizations:
¢ Bypassing the Login page

o Preselecting Databases

¢ Displaying specific fields

e Changing the records display default number

e Changing a template title

e Changing the graphical interface

e (Creating a table

¢ Controlling the flow of pages

Bypassing the Login page

The best way to bypass the Login page is to set the username and password for each user in a separate
head.htm file; for example, in a file called billhead.htm you would add the following lines:

[SP_MACRO]sp.assign macro="sp.username” value="bill"[/SP_ MACRO]
[SP_MACRO]sp.assign macro= "sp.password" value="<password>"[/SP_MACRO]

3-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Tutorial for Customizing Templates

There are other ways of bypassing the Login page. You can set the username and password in the
webspirs.cfg file, for example:

sp.username=name
sp.password=password

You can also pass the username and password in the command line and then save it as a bookmark if you are
using Netscape:

http://myserver/cgi-bin/webspirs.cgi?sp.username=names&sp.password=pw

The disadvantage to this is that the password can be seen.

Preselecting Databases

You can preselect databases and present the user with a search page with databases already selected for them.
This is useful if the users always search the same databases. You can set the database ID or the set ID using
the methods described in “Bypassing the Login Page.” For example, you can set an individual Medline
database or set of Medline databases in the head. htm file by adding one of the following lines:

[SP_MACRO]sp.assign macro="sp.dbid" value= "ML4L"[/SP_MACRO]
[SP_MACRO]sp.assign macro="sp.setid" value= "ML"[/SP_MACRO]

You can add one of the following lines to the webspirs. cfg file as follows:

sp.dbid=ML4L
sp.setid=ML

You can pass the database ID in the command line and save it as a bookmark in Netscape:

http://myserver/cgi-bin/webspirs.cgi?sp.dbid=ML4L

Displaying Specific Fields

If you want to consistently display specific fields in your search results, such as the title (TT) and author (AU)
fields, you can make a simple change in the head.htm file to change the default fields to display. Edit the
following line in that template:

[sp macro]lsp.assign macro="sp.record.fields.p" value="*URLFIELD"[/sp macro]

Change the value= parameter to "TI, AU". The line will then read:

[sp macrolsp.assign macro="sp.record.fields.p" value="TI,AU"[/sp macro]

You can set WebSPIRS to display other specific fields as well. To display brief fields (citation fields) as the
default, use "CITN" for the value= parameter. The CITN fields vary according to database. For example,
for the PsycLIT Journal Articles database the fields are Title, Author, Institutional Affiliation of First Author,
Journal Name, and the abstract volume and number. Of course, by selecting "Brief Fields" from the Search
page, you will get the same result. This is the simplest way, but it will only last for the current session.

Note: If you are interested in displaying fields other than "Brief Fields" for only the current session, you can
access the Record Display Options page by clicking the "Options" button on the Search page. Then you can
select which fields to display and how they are to be sorted.

SilverPlatter Proprietary 3-5

Tutorial for Customizing Templates WebSPIRS Implementor’s Guide

Changing the Records Display Default Number

If you would like more than five records to display on your page of search results, you can change the default
number of records by making a simple edit in the head . htm template. Edit the following line in that file:

[sp macrolsp.assign macro="sp.record.howmany.p" value="5"[/sp macro]

Change the value= parameter to another number; for example, you could change it to "20" so that the line
reads:

[sp macrolsp.assign macro="sp.record.howmany.p" value="20"[/sp macro]

You can use any number no matter how high for the value= parameter.

Changing a Template Title

At the top of each complete WebSPIRS template is a line similar to the following line from the
search. htm template:

[SP_MACRO]sp.assign macro="sp.template description" value="Search"[/SP MACRO]

In this line the sp . assign macro is used to assign a value to the macro variable

sp.template description. The value is the template name, in this case "Search.” When the resulting
page from this template is displayed by your browser, the word "Search" will appear at the top of the browser
page. For example, if you use Netscape, the words Netscape - [WebSPIRS: Search] will appear in the
Netscape title bar. (The template title also appears in the footer as a reference page name.)

By changing the value= parameter for the sp.template description variable, you change the title
of the template.

Changing the Graphical Interface

This section provides instructions for customizing the following graphical aspects of the WebSPIRS pages:

e The Toolbar
e Background Graphic
e Logo Graphic

Note: The Library of Congress provides access to helpful “Icons, Images, and Backgrounds for WebPages”
at the following URL.:

http://lcweb.loc.gov./global/internet/html.html#graphics

The Toolbar

At the top of each WebSPIRS page (except the Login and Logout pages) you will find the toolbar icons. For
example, the Search page displays the toolbar icons. That page is generated from the search.htm
template, which allows the user to create Boolean searches. The following lines from that template set the
appropriate appearance and connections for the toolbar. Since this is the Search page, the Search icon is set
to the on state and the Help icon points to the appropriate help page.

3-6 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Tutorial for Customizing Templates

[SP_MACRO] sp.assign macro="sp.tbar.image.search" value="srchon.gif"

reset="y" [/SP_MACRO]
[SP_MACRO] sp.assign macro="sp.tbar.page.help"” value="c_ srch.htm"”

reset="y" [/SP_MACRO]
[SP_MACRO]sp.include filename="tbar.htm"[/SP_MACRO]
[SP_MACRO]sp.assign macro="sp.tbar.image.search" value="srchoff.gif"

reset="y" [/SP_MACRO]
[SP_MACRO]sp.assign macro="sp.tbar.page.help” value="help.htm"

reset="y" [/SP_MACRO]
The tbar. htm template file is included to add the toolbar to the page. The sp.assign macro is used four
times, twice to assign values to the sp. tbar.image.search variable and twice to assign values to the
sp.tbar.page.help variable. The graphic file, srchon. gif, provides the Search toolbar icon in the
on state (with a "pushed in" appearance). The graphic file, srchoff. gif, provides the Search toolbar icon
in the off state. The ¢_srch.htm file provides on-line help for searching, and the help.htm file provides
the following basic help message, "A help topic was not specified. Please contact your administrator and
report this problem," if a help topic is not found.

By editing the head. htm file, you can substitute your own graphic images for the toolbar icons. This is done
by changing the filenames. Or you can edit the files and keep the names. No template changes are necessary.
You can also change the name of the help file for this page and move the toolbar to a different location on the

page.
Note: Inthe webspirs.cfqg file the head.htmfile is set to the sp. form. head. p macro variable.

Background Graphic

You can change the background for each WebSPIRS page by editing the head . htm template and changing
the graphic file. For example, in the following line taken from head.htm, you can substitute a different
graphic image for the paper.jpg file which provides the gray, paper look of each WebSPIRS page:

<BODY BACKGROUND="[SP_MACRO]sp.webspirs.imagedir[/SP_MACRO]paper.jpg">
Logo Graphic

The SilverPlatter logo is shown at the bottom of ecach WebSPIRS page. The graphic file for the logo is
included in the foot.htm template, which provides a consistent look for the bottom of each page. You can
change the graphic file by substituting a different graphic image file for the sp. 35. gif file in the following
line from foot.htm:

<IMG border=no ALIGN=left SRC="[SP_MACRO]sp.webspirs.imagedir[/SP_MACRO]sp35.gif"
ALT="SilverPlatter World">

If you substitute your own file, you will probably want to provide a different value for the ALT= parameter as
well.

Creating a Table

You can organize some of the information on the pages into tables. For example, on the UBP WebSPIRS
client, the account balance information appears as one sentence on the Search page. Here is the HTML format
in the tbar.htm template:

<p>Charges for [sp macro]sp.username[/sp macro]:
This session $[sp macro]sp.admin.total.used.[/sp macrol
Account balance $[sp macro]sp.admin.balance[/sp_macro]

After WebSPIRS expands the macros, it displays as one sentence on the Search page as follows:

Charges for bettyk: This session $0.00; Account balance $263.60.

SilverPlatter Proprietary 3-7

Tutorial for Customizing Templates WebSPIRS Implementor’s Guide

By adding table tags to the tbar . htm template, you can encompass this information in a 3-column table:

<p><TABLE BORDER>

<TR VALIGN= "MIDDLE">

<TD>

Charges for [sp macrol]sp.username[/sp macro] :</TD>

<TD>

This session $[sp.macro]sp.admin.total.used[/sp _macro]</TD>
<TD>

Account balance $[sp macro]sp.admin.balance[/sp _macro] </TD>
</TR>

</TABLE>

After adding the table tags to the tbar.htm template, this information will appear on the Search page in a
three-column table similar to the following:

Charges for bettyk: | This session $0.00 | Account balance $263.60

Controlling the Flow of Pages

The user advances through the pages of WebSPIRS by way of two macros that display the next form. One is
the sp.nextform macro variable, and the other way is the sp.generate url macro command. There
are two basic ways to implement these macros:

¢ Using a Submit Button
e Using a URL

Using a Submit Button

The most common way of controlling the flow of pages is through the use of the sp . next form variable.
You can set the variable to the next page by using a submit button. Here is an example (note that the space
after index.htm is required):

<INPUT NAME="sp.nextform=index.htm " TYPE="SUBMIT" VALUE="Index">

The above example sets the sp.nextform variable to the index . htm template causing that page to load
next. You can add a list of tag=values to the sp . next form parameter as well. The VALUE= parameter is
the label for the button. You can name a submit button anything you wish by changing that parameter. If you
omit the VALUE= parameter, the button will be labeled "Submit."

Using a URL

Another method of moving to the next form is by using the sp.generate url macro command. Here is
an example:

[SP_MACRO]sp.generate url nextform="thesterm.htm"
args="sp.thesaurus.term.p=sp.currterm"[/SP_MACRO]

The macro generates a URL to another template, in this case to the Thesaurus page template. The
nextform= parameter specifies the template to be loaded if the URL is followed. The a rgs= parameter
specifies arguments to be added onto the URL, in this case it specifies the current term.

3-8 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Tutorial for Customizing Templates

WebSPIRS Templates

This section describes the existing WebSPIRS templates. The following diagram shows the interaction of
those WebSPIRS templates which provide the complete pages. There are many additional large fragments

and utility fragments.

WebSPIRS Template Flow

(Complete Pages)

login.htm

H password.htm |

e OO -

ﬁl database.htm H

motd.htm |

search.htm

—{ hotlink.htm

setfield.htm |

)

recsmark.htm
| %l urlsrch.htm

|
scroll.htm |
|

ﬁl

index.htm |

%l show1rec.htm |

ﬁl suggest.htm

%l recdtoc.htm |

subject.htm

%l prntopts.htm |

thesterm htm | [saveopts.htm |

ﬁl

logout.htm |

%l mailopts.htm |

Complete Pages

Following is an alphabetical list of the WebSPIRS templates which are complete pages. These pages may use
fragments, but they are complete unto themselves:

database.htm

hotlink.htm

index.htm

login.htm

logout.htm

This template allows users to select a database from a list by clicking on a
checkbox.

This template is used if the record is hotlinked. It displays the linked to
record. In this template, the sp. record. source. p macro is assigned
avalue of " HOTLINK" to indicate that the record is to come from a
hotlink .

This template is accessed from the Index button on the toolbar. The user
can choose to view the records for a selected index term(s) and can change
the viewed index.

This template provides the WebSPIRS login page.

This template allows the user to log out of WebSPIRS and free the
connection.

SilverPlatter Proprietary 3-9

Tutorial for Customizing Templates

WebSPIRS Implementor’s Guide

mailopts.htm

motd.htm

password.htm

prntopts.htm

recdtoc.htm

recprint.htm

recsmark.htm

saveopts.htm

scroll.htm

search.htm

setfield.htm

showlrec.htm

subject.htm

suggest.htm

thesterm.htm

urlsrch.htm

3-10

This template provides the Mail Records page which is accessed when the
"Mail" button is clicked on the Search page.

This template provides the Message of the Day from the WebSPIRS
system administrator. It is accessed by way of a hotlink on the
database.htm page.

This template provides the "Change Password" page which allows the
user to change his password.

This template provides the Print Records page which is accessed when the
"Print" button is clicked on the Search page. It connects to the
exphtml . htm template.

This template provides a table of contents for some full-text records (by
way of a hyperlink).

This template provides the current records in a format which will look
better when printed; that is, it will not contain form controls or the
toolbar.

This template shows the records which the user has marked for later
printing or saving to a file. The user can also unmark records.

This template provides the Save Records page, which is accessed when the
"Save" button is clicked on the Search page. It connects to the
expraw.htm template.

This template provides a more convenient display of records after the user
has scrolled them.

This template allows the user to build a Boolean search and create a
search history by including the s rchcomn . htm fragment. The records
are displayed on the page by including the rechits.htm template
fragment.

This template provides provides the page shown when the user clicks the
Options button on the Search page (search.htm). The user can select
specific fields from the list.

This template displays all the fields in a single record from a hotlinked
record title.

This template is accessed from the Thesaurus button on the toolbar. It
provides the Thesaurus Subject List.

This template is accessed from the Suggest button on the toolbar. It allows
the user to enter a word or phrase to be matched with a database's
controlled vocabulary. A list of suggested terms displays.

This template provides the term details for a thesaurus term selected from
the Thesaurus Subject List or the Suggest List.

This template composes searches from hotlinks accessed from the index or
history.

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Tutorial for Customizing Templates

Large Fragments

Following are large fragments used by other templates:

rechits.htm

seldbs.htm

srchcomn.htm

Utility Fragments

This fragment displays the retrieved records. It is included in
search.htmand scroll.htm

This fragment provides the list of selected databases. The user can
deselect a database by clicking the checkbox before the database name. It
is used on most templates.

This fragment builds the limit inputs and field lists and retrieves the
records for a search. It is included in the search.htmand
scroll.htm templates.

Following are utility fragments used by the templates:

action.htm

checkbox.htm

clrsrch.htm
dbitem.htm

dblitmck.htm

exphtml.htm

expmail.htm

expraw.htm

expterm.htm

fielditm.htm

foot.htm

head.htm

indterm.htm

maildone.htm

This fragment file is included to generate the <FORM ACTION=...>
data to link back templates to WebSPIRS. It is used on every form page
after <FORM.

This fragment adds a checkbox. It is used by subheadings, the database
list, and for individual purposes.

This fragment clears the search fields and displays the search page again.

This fragment provides the format for each item in the opened database
list. Itisused in seldbs.htm

This fragment provides each item in the available database list. It is used
in database.htm

This fragment shows records and the search history in HTML format. It
does not show the buttons.

This fragment includes either exphtml . htmor expraw.htm
depending upon the sp.export. format set by the user in
mailopts.htm.

This fragment shows records and the search history minus the HTML
markup and buttons.

This fragment explodes a thesaurus term for searching and returns to the
search page.

This fragment provides the format for each field in a field list, with a
checkbox. Used in setfield.htm.

This fragment provides a consistent look for the bottom of each
WebSPIRS page and is included at the bottom of each template.

This fragment provides a consistent look for the top of each WebSPIRS
page and is included at the top of each template. Many variables are set
once in this template.

This fragment provides the format for an index list term.

This fragment provides the page that displays after mail has been sent. It
shows the message, "Mail sent! Your records have been mailed."

SilverPlatter Proprietary 3-11

Tutorial for Customizing Templates

WebSPIRS Implementor’s Guide

mrkclear.htm

news.htm

pagesize.htm

recfmt.htm

recfmtck.htm

recfmtrw.htm

srchterm.htm

subtermd.htm

sugsrch.htm

sugterm.htm

tbar.htm

thesitem.htm

top.htm

12

This fragment clears marked records and displays all the records again.

This fragment provides a news area for the login page. Edit this template
if you want to provide a message for others to see before they log in.

This fragment provides a drop down list of the number of records to show.
You can edit this template to limit or increase the number of records users
can see at one time.

This fragment provides the format for each record with no checkbox.

This fragment provides the format for each record with a checkbox for
marking,

This fragment provides the record output in raw (no HTML; no buttons)
format.

This fragment searches for a thesaurus term and returns to the search
page.

This fragment provides the format for a term description from a suggested
list of terms.

This fragment provides a search based on the term from a suggested list of
terms.

This fragment provides the format for a suggested list term.

This fragment provides the WebSPIRS toolbar, which is found on all main
pages except the login and logout pages. The names of the . gif files are
setin head.htm.

This fragment provides the format to make the thesaurus term into a link
to its term detail.

This fragment provides the first "real" page in the system. The user does
not see this page. It allows a one-time-per-session setting of the usage
based pricing (UBP) information.

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Chapter 4 - Creating and Using Macros

This chapter defines all of the SilverPlatter macro commands and macro variables. These macros are listed
under the following categories:

o Interface-specific variables
¢ Administration

e General database

e Text display

e Field-specific index

e Search

¢ Automatic subject lookup
o Field list

e Thesaurus term

¢ Guide keyword

e Marked records

¢ Miscellancous macro support

You can add macros of your own design by following the instructions in the “Adding Macros™ section.

Understanding the Macros

Many predefined macros are contained in the HTML templates used by WebSPIRS. These macros are
preceded by the [SP_MACRO] tag and followed by the [/SP_MACRO] tag. By using

[SP_MACRO]sp.assign macro="sp.template.description"” value="..."[/SP_MACRO]

the contents of the value= parameter can be placed in the macro variable set by the macro= parameter.
See the section “Miscellancous Macro Support™ for details about the sp . assign macro.

Macros can be used as names for any form widget. New macros can be added to the server code without
changing the code by implementing a new class derived from www_HTML_Helper and then relinking the
server. The macros depend upon the Content Operative Retrieval Engine (CORE) source code.

The SilverPlatter macros help the user log in to ERL, move through the web forms, open and search
databases, retrieve and display text, scroll through a selected list of terms, access database-specific help, mark
records, and lookup subjects automatically.

There are two types of macros:

e Macro commands - These macros cause an action to be performed and are generally coded in the
template. Many macro commands will cause HTML output to be included. Examples of macro
commands are sp.assign , which generates no output, and sp.record.text , which generates text
for records.

e Macro variables - These macros have a value and are generally swapped back and forth from the client
to the server as HTTP "macro=value" pairs. Examples of macro variables are sp.search.value.p ,
which is used as the search string, and sp.dbid.p , which indicates the opened database. Some
variables are defined by WebSPIRS to indicate options, such as sp.search.value.p . Other variables
are used by templates and are not used internally by WebSPIRS, such as sp.back.form.p . You may
freely create any variables for your own use by way of the sp.assign macro. See “Miscellaneous Macro
Support” for details on the sp.assign macro.

SilverPlatter Proprietary 4-1

Creating and Using Macros WebSPIRS Implementor’s Guide

Some macro variables have a .p or a .pp suffix. The suffix .p indicates persistence, which means it
exists throughout the active session, and it writes out the variable as long as there is no <INPUT> or
<SELECTED> statement for the name. When using multiple values that may or may not be displayed
together, the .pp suffix writes out the variable if it doesn't find the value in one of the <INPUT>

statements.

Nested Macros

Macros can be nested and can be included as arguments to other macros using the
[sp _block]..[/sp block] tags. In the following example, which was taken from the search.htm

file, the sp . assign macro has been nested within the sp . foreach macro and is the text= argument.:

[SP_MACRO]sp.foreach iterator="LIST" list=sp.search.field2.p variable="sp.search.field"
text=[sp block] [sp macro]sp.assign macro="sp.search.2" append="yes" interpret="yes"
value="({(}sp.search.term2.p{)} { in } sp.search.field (sp.ifnotlast))"[/sp macro]

[/sp_block]
ifnotlast=" or
default=[sp block] [sp macro]lsp.assign macro="sp.search.2"

value=sp.search.term2[/sp _macro] [/sp_block]
[/SP_MACRO]

"

SilverPlatter Macros

This section describes all of the SilverPlatter macro commands and macro variables available for use.

Interface-Specific Variables
The following interface macro variables help the user log in to WebSPIRS and navigate through the pages:

Sp.username
Example: [SP MACRO] sp.username[/SP_MACRO]

The value of this macro variable is the name of the user accessing the ERL account. This is found on
the login.htm, tbar.htm, and password.htm templates.

sp.password
Example: [SP MACRO] sp.password[/SP_MACRO]

The value of this macro variable is the password of the user accessing the ERL account. This is found
onthe login.htm and password.htm templates.

sp.thisform

Example:

[SP_MACRO] sp.assign macro="sp.thisform"
reset="yes" interpret="yes" value="sp.form.search.p"[/SP_MACRO]

The value of this macro variable is the template that created the current form. It is used on the
rechits. htm template and many other templates.

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.nextform
Example: [SP MACRO] sp.nextform[/SP_MACRO]

The value of this macro variable is the template to use for the next form. It is found on most
templates.

sp.search.invalid_message

Example:

[SP_ MACRO]sp.if left value ="" condition="NE"
right value="sp.search.invalid message”[/SP_MACRO]

The value of this macro variable is the message generated if there is an error in a search, such as a
parsing error. It is found on the srchcomn.htm template.

sp.form.show.p

Example:

[SP_MACRO]sp.assign macro="sp.form.show.p"
value="search.htm"[/SP_MACRO]

This macro variable holds the name of the default record display template. It is used on the
head.htmand rechits.htm templates.

sp.form.search.p

Example:

[SP_MACRO]sp.assign macro="sp.form.search.p"
value="search.htm"[/SP_MACRO]

This macro variable holds the name of the default search template.

sp.login_error
Example: [SP MACRO]sp.login error[/SP MACRO]

This macro variable inserts an error message if the login information is incorrect. It is used in
login.htm.

sp.template_description

Example: [SP MACRO]sp.template description value="Database
Search"[/SP_MACRO]

The value of this macro variable is the name or title of the template, for example, "Database Search."
It is found on all main templates.

sp.form.head.p
Example: [SP_MACRO]sp.include filename=sp.form.head.p[/SP_MACRO]

This macro variable is the top of the form. It is found on all main templates.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

sp.form.foot.p
Example: [SP MACRO] sp.include filename=sp.form.foot.p[/SP_MACRO]

This macro variable is the bottom of the form. It is similar to sp. form.head. p in that it appears
on all form templates.

sp.form.top.p
Example: [SP MACRO] sp.form.top.p[/SP_MACRO]

This macro variable holds the name of the default database list template.

sp.back.form.p

Example:

[SP_MACRO]sp.assign macro="sp.back.form.p"
reset="yes" Value=sp.thisform[/SP_MACRO]

The macro variable sp.back. form.p is assigned a value by the sp. assign macro. If the page is
the Search page, it has a value of the search.htmfile. It is found on most templates.

sp.back.form.title.p

Example:
[SP_MACRO]sp.assign macro="sp.back.form.title.p"
reset="yes" value="Back to search"[/SP_MACRO]

The macro variable sp.back. form.title.p is assigned a value by the sp.assign macro. The
value is the title of the back button. In the case of the above example, the title (value) is "Back to
search." It is found on most templates.

sp.tbar.page.value

Example:
[SP_MACRO]sp.assign macro="sp.tbar.page.search"
value="search.htm" reset= "y"[/SP_MACRO]
This macro variable provides the page accessed from a toolbar icon, such as the Search, Database,
Index, Suggest, Thesaurus, Help and Logout icons. It is found on the head.htmand tbar.htm
templates.

sp.export.range.p

Example:
[SP_MACRO]sp.assign macro="sp.export.range.p"
value="PAGE" [/SP_MACRO]
This macro variable specifies what to export according to the value ("PAGE", "ALL", or
"MARKED"). Itisused in the prntopts.htm, saveopts.htm, and mailopts.htm templates.
An example of its use can be seen on the Save Records page, where the user can save the records on
the previous page, all the records, or the marked records.

4-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.export.save.history.p

Example:
[SP_ MACRO]sp.if condition= "EQ"
leftvalue= "" rightvalue= sp.export.save.history.p
then=[sp block]...[/sp block] [/SP_MACRO]

This macro variable includes the search history in the output when printing, saving, or mailing
records. It is used on the exphtml . htm, expdraw.htm, prntopts.htm, saveopts.htm, and

mailopts.htm templates.

sp.export.recnums.p

Example:
[SP_MACRO]sp.if leftvalue="1"
condition="EQ" rightvalue=sp.export.recnums.p
then=[sp block]...[/sp block] [/SP_MACRO]
This macro variable includes the number of records in the output when printing, saving, or mailing
records. It is used in the recfmt.htm, prntopts.htm, saveopts.htm and mailopts.htm

templates.

sp.export.format.p

Example:
[SP_ MACRO]sp.if leftvalue="raw"
condition="EQ" rightvalue=sp.export.format.p

then=[sp_block]m..[/sp_block] [SP_MACRO]
This macro variable determines whether the output will be "raw" (no HTML; no buttons) or "html"
(HTML but no buttons). If "raw", expraw.htmis used and if "html", exphtml . htm is used. It is

found on the expmail.htmand mailopts.htm templates.

sp.export.mailto.p

Example: [SP_MACRO]sp.export.mailto.p[/SP_MACRO]
This macro variable is passed to the sp .mailcmd mail script as the user's Email address. It is used

on the mailopts.htm template.

SilverPlatter Proprietary

Creating and Using Macros WebSPIRS Implementor’s Guide

Administration Macros

The following macro commands and macro variables relate to WebSPIRS and ERL administration:

Macro Commands

The following are administration macro commands:

sp.webspirs.version
Example: [SP MACRO] sp.webspirs.version[/SP MACRO]

This macro defines the current version of WebSPIRS. It is also used in foot.htm, and it adds the
WebSPIRS version number. It is set in the webspirs. cfg file.

Version [SP_MACRO]sp.webspirs.Version[/SP_MACRO].

sp.erl.logout
Example: [SP MACRO]sp.erl.logout[/SP _MACRO]

This macro disconnects the user from the ERL server(s).

sp.erl.message.of.the.day
Example: [SP MACRO]sp.erl.message.of.the.day[/SP_MACRO]

This macro provides the message of the day from the ERL administrator if a message exists. It is
found in the motd.htm and the database.htm template. Here is an example:

[SP_ MACRO]sp.if leftvalue=""
rightvalue=[sp_block][sp_macro]sp.erl.message.of.the.day[/sp_macro][/
sp_block]

condition="NE"

then=[sp_block]

<a href="[sp macro]lsp.generate url

nextform="motd.htm"[/sp macro]">Important messages from the
server administrator

[/sp block]

[/sp macro]

sp.admin.total.used
Example: [SP MACRO] sp.admin.total.used[/SP_MACRO]

This macro provides the total amount of charges for records used during a WebSPIRS UBP session.
The sp.admin.initial.used.p macro variable, which contains the user's initial balance, is
used with sp.admin.total.used. Itisused in calculating the amount used in the session. It is
found on the tbar.htm template and displayed on the Search page.

sp.admin.balance
Example: [SP MACRO]sp.admin.balance[/SP_MACRO]

This macro provides the account balance when using the WebSPIRS UBP client. It is found on the
tbar.htm template and displayed on the Search page.

4-6 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Macro Variables

The following are administration macro variables:

sp.erl.server.address
Example: [SP_MACRO]sp.erl.server.address[/SP_MACRO]

This macro variable is used to hold the server addresses when iterating through them as part of the
Message of the Day routine.

sp.webspirs.docdir
Example: [SP MACRO] sp.webspirs.docdir[/SP_MACRO]

The value of this macro variable is the directory containing the WebSPIRS documentation. It is used
in the foot . htm fragment to include a hyperlink to the WebSPIRS documentation. It is set in the
webspirs.cfgfile.

WebSPIRS

General Database Macros

This section describes the macro commands and macro variables which provide the database operations.

Macro Commands

Following are the general database macro commands:

sp.avail.dbs.foreach

Example:

[SP_MACRO]sp.avail.dbs.foreach
criteria=sp.avail.dbs.criteria.p
normalfile="dblitmck.htm"
titlefile="dblttlck.htm"

[/SP_MACRO]

This macro inserts a multiple select list of databases that match the select criteria. It is found on the
database.htm template. See how the sp.avail.dbs.foreach macro looks after the user has
logged in, the HTML template has been processed, and it is displayed by your browser as part of the
Select Databases form .

sp.opened.dbs.foreach

Example:

[SP_MACRO] sp.opened.dbs.foreach
file="<template fragment>.htm"
[/SP_MACRO]

When a user selects more than one database from the database list, this macro loops through the
opened databases and inserts a graphic of a CD before each of the databases being searched. The file=
parameter contains a template fragment with the database name and titlescreen. This macro is found
on the seldbs.htm template. See how a sample list of databases looks when the template has been
processed and the list appears on your browser under the toolbar on the Search page.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

Macro Variables

Following are the general database macro variables:

sp.avail.dbs.item.id
Example: [SP MACRO]sp.avail.dbs.item.id[/SP_MACRO]

This macro variable provides the database identifier. It is found on the db1itmck.htm template.

sp.avail.dbs.item.name
Example: [SP MACRO]sp.avail.dbs.item.name[/SP MACRO]

This macro variable provides the displayable name of a database. It is found on the dblitmck.htm
and dblttlck.htm templates.

sp.opened.dbs.item.name
Example: [SP MACRO] sp.opened.dbs.item.name[/SP MACRO]

This macro variable produces the name of an opened database. It is used in the dbitem.htm
template fragment.

sp.avail.dbs.item.indent
Example: [SP MACRO]sp.avail.dbs.item.indent[/SP_MACRO]

This macro variable provides the indent prefix which makes an indentation in the structured database
list. For HTML purposes, an unordered list .. isused. This variable is used on the
dblitmck.htmand dblttlck.htmtemplates.

sp.avail.dbs.item.endindent
Example: [SP MACRO]sp.avail.dbs.item.endindent[/SP_MACRO]

This macro variable provides the indent suffix which ends an indentation in the structured database
list. For HTML purposes, an unordered list .. isused. It is used on the
dblitmck.htmand dblttlck.htmtemplates.

sp.dbid.p
Example: [SP_MACRO]sp.dbid.p[/SP_MACRO]

This macro variable provides the opened database ID(s). Comma-delimited database IDs will cause
the identified databases to be searched as a unit. It is used on the dbitem.htm and
dblitmck.htm templates.

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.avail.dbs.criteria.p

Example:

[SP_MACRO]sp.avail.dbs.foreach criteria="sp.avail.dbs.criteria.p"
value="P"[/SP_MACRO]

This macro variable specifies a set of criteria to be used in opening a database or presenting a list of
available databases for selection. Supplying SETID=XX causes any database matching the setid to be
included in the list. Any other input will cause the database to be opened temporarily. If it has a
thesaurus, the user's input is checked for a match; otherwise, the database's "vocabulary map to fields"
are searched. Only databases which match in the thesaurus or the "vocabulary map to fields" may be
selected and searched using the value of the criteria for the search. It is found on the
database.htm template.

Text Display Macros

This section describes the macro commands and macro variables which are used to display information about
records retrieved by searches.

Macro Commands

Following are the text display macro commands:

sp.record.toc
Example: [SP MACRO]sp.record.toc[/SP _MACRO]

This macro inserts the table of contents for a full text record. The record number is assumed to be
contained in the variable "sp.tocrec". Itisfound in the recdtoc.htm template.

sp.currentrecord.absolute.url

Example:

[SP_MACRO]sp.currentrecord.absolute.url
field="*URLField"
showtemplate="showlrec.htm"

[/SP_MACRO]

This macro is used to generate the URL in the usage-based pricing (UBP) WebSPIRS titles display.
The parameter field= is used to specify the field whose text is the visible, clickable part of the URL
(usually blue), and showtemplate= is the template to be used to display the records if the user follows
the generated URL. The fie/d contains what WebSPIRS thinks is the best field for a *URL. It is used
in the recfmtck. htm template.

sp.currentrecord.abstract.cost
Example: [SP MACRO] sp.currentrecord.abstract.cost[/SP _MACRO]

This macro is used with UBP WebSPIRS. It provides the cost of the current record. It is used in the
recfmtck. htm template.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

sp.record.text
Example:

[SP_MACRO]sp.record.text
filename="recfmtck.htm"
[/SP_MACRO]

This macro displays the requested records. The recfmtck.htm file provides the format for each
record with a marking checkbox. This macro is used on the showlrec.htm template.

sp.record.counts
Example:

[SP_MACRO] sp.record.counts
source=sp.record.source.p
[/SP_MACRO]

This macro displays the number of records yielding hits for the current search. It is used in the

srchcomn . htm template to display the number of records on the Search page. It is also used on
several other templates.

sp.record.initialize

Example: [SP_MACRO]sp.record.initialize [/SP_MACRO]

This macro makes sure all scroll values have been calculated and performs any specified searches. It
isused on the rechits.htm, recprint.htm and showlrec.htm templates.

sp.makespurl

Example:

[SP_MACRO] sp.checked selections=sp.record.marked.pp
current="sp.makespurl” [/SP_MACRO]

This macro build a "SPURL" syntax string to the current record. It is found on the recfmt . htmand
recfmtck. htm templates and used in marking records. The checkbox value is the result of

sp.makespurl syntax to specify a record. See the description of class core_SPURL in the
SilverPlatter CORE Wrapper Reference Manual.

sp.url.p
Example: [SP_ MACRO]sp.url.p[/SP MACRO]

This macro variable contains the "SPURL" syntax hotlink which specifies the next record to be
extracted, text, graphics, and portions of records. It is found on the recsmark.htm,
mrkclear.htm search.htm and srchcomn. htm templates.

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Macro Variables

Following are the text display macro variables:

sp.record.fields.p
Example: [SP_MACRO]sp.record.fields.p[/SP_MACRO]

This macro variable provides the fields to display in sp. record. text. Thisisused on the
head.htm, rechits.htm, fielditm.htm recfmtck.htm, recprint.htm and
showlrec.htm templates.

sp.record.number.p
Example: [SP MACRO] sp.record.number.p[/SP_MACRO]

The value of this macro variable is the starting record number to display. It is used on the
rechits.htm recprint.htm urlsrch.htm and srchcomn.htm templates.

sp.currentrecord
Example: [SP MACRO]sp.currentrecord[/SP_MACRO]

This macro variable contains the record number of the currently retrieved record. It is found on the
recfmt.htmand recfmtck.htm and used by the macros that get specific things from the current
record.

sp.currentrecord.dbname
Example: [SP_MACRO]sp.currentrecord.dbname[/SP MACRO]

This macro variable contains the database name of the current record. It is found on the
recfmt.htmand recfmtck.htm templates.

sp.record.howmany.p
Example: [SP MACRO] sp.record.howmany.p[/SP_MACRO]

This macro variable provides the number of records to display in sp. record. text. It is found on
the head.htm, rechits.htm, search.htm and scroll.htm templates.

sp.record.source.p

Example:

[SP_MACRO]sp.assign reset="yes" macro="sp.record.source.p"
value= " HOTLINK" [/SP_MACRO]

This macro variable contains "SEARCH" to indicate that a search is to be done or " HOTLINK" to
indicate that the record(s) are to come from a hotlink (in databases that have hotlinks between
records). If it contains SEARCH, it looks for the sp.search.value.p variable; if HOTLINK, it
looks for the sp.url.p variable. It is found on the rechits.htm, recsmark.htm,
srchcomn.htm, hotlink.htm and showlrec.htm templates.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

sp.record.labels.p
Example: [SP_MACRO]sp.record.labels.p[/SP_MACRO]

This macro variable contains a value that specifies whether long, short, or both field names are to be
displayed for the field label options. It is used in the head.htm, recprint.htm, and
setfield.htm templates.

sp.record.lastshown.p
Example: [SP MACRO] sp.record.lastshown.p[/SP _MACRO]

This macro variable stores the last record number in a list of returned records; for example, if five
records are returned, the form will display "1 of 5", and "5" will be the last record. It is used in the

rechits.htmand recprint.htm templates.

sp.record.sortlimit.p

Example:
[SP_MACRO]sp.isinlist selections=sp.record.sortlimit.p
value="100" iftrue="SELECTED"[/SP_MACRO]

This macro variable contains the maximum number of records that can be sorted. If the number of
records retrieved in a search exceeds this value, they will not be sorted. It is used in the
setfield.htm template.

sp.record.sortfields.p

Example:
[SP_MACRO]sp.field.list sortlist="YE3" criteria="*A"
selected=sp.record.sortfields.p[/SP_MACRO]

This macro variable provides the fields to sort, such as "PY,D,AU,A." It needs the direction as well as
the field to sort. For example "SO,A" sorts the SO field in ascending order. Note that two fields can
be supplied if sp. record.sortfields.p is multiple select. It is used in the setfield.htm

template.

sp.record.sortrecords.p
Example: [SP MACRO] sp.record.sortrecords.p[/SP _MACRO]

This macro variable has a value of "YES" or "NO". If the value is "YES", sorting will occur. In the
following HTML example, macros provide a checkbox for enabling/disabling sorting and a drop
down list for choosing the sort arguments:

<input type="checkbox" name="sp.record.sortrecords.p”

[sp_macro] sp.checked selections=sp.record.sortrecords.p

value="YES">

<SELECT NAME= "sp.record.sortfields.p">
[SP_MACRO]sp.field.list selected=sp.record.sortfields.p
sortlist="YES"
[/SP_MACRO]

</SELECT>

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.hotlink.form.p
Example:

[SP_MACRO]sp.assign macro="sp.hotlink.form.p"
value="hotlink.htm"[/SP_MACRO]

This macro variable contains a template to be used when following a hotlink. It is used by
hotlink.htmand setin head.htm

Search Macros

This section defines the macro command and macro variables which define the search and search history.

Macro Command

Following is the search history macro command:

sp.searchhistory.build
Example:

[SP_MACRO]sp.searchhistory.build

LABELS= "sp.searchhistory.labels.p"
COUNTS="sp.searchhistory.counts.p"
LIST="sp.searchhistory.list.p" [/SP_MACRO]

This macro rebuilds the search history from FORM variables. It should be placed before any macro
that will cause the current search to be performed. It adds the current search to the search history.
The Search History displays on the Search page. The sp.searchhistory.labels.p variable
provides identifying information before the search history term, the
sp.searchhistory.counts.p variable provides the number of hits for the term, and the

sp.searchhistory.list.p provides the secarch history list. It isused in the search.htm
template.

Macro Variables

Following are the search and search history macro variables:

sp.search.value.p
Example: [SP MACRO] sp.search value.p[/SP_MACRO]

This macro variable supplies the search in SilverPlatter Information Retrieval System (SPIRS) find

parser format. It is used in the clrsrch.htm, database htm, search.htm, scroll.htm, and srchcomn.htm
templates.

sp.searchhistory.operator
Example: [SP MACRO] sp.searchhistory.operator[/SP_MACRO]

This macro variable contains the Boolean operator (AND, OR, NOT, or REMOVE) to be used in
combining terms selected from the search history list. It is used in the s rchcomn . htm template.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

Automatic Subject Lookup Macros

The following macro is used for automatic subject lookup (ASL):

sp.asl.list

Example:

[SP_MACRO]sp.asl.list
termlist="sp.asl.terms"
phrase=sp.asl.phrase.p
selected=sp.select.terms.pp
limit="10"

[/SP_MACRO]

This macro provides a list of the ASL terms selected by the user. It is used on the suggest.htm
template. The user clicks the Suggest button on the toolbar, enters a term, and a list of suggested
terms and term details displays. Note that the Suggest button appears only when specific databases
are selected.

Parameters:

termlist Provides the list of terms.

phrase Specifies the word or phrase the user is interested in.
selected Any previously selected terms.

limit How many terms the ASL is to match.

Field-Specific Index Macros

This section describes the macro commands and macro variables which are used with index searches.

Macro Commands

Following are the field-specific index macro commands:

sp.fsi.tosearch

Example:

[SP_MACRO] sp.fsi.tosearch
macro="sp.search.value.p"
reset="yes"
terms=sp.fsi.term.p
fields=sp.fsi.fields.p
[/SP_MACRO]

This macro takes an ORed search of terms and fields and puts the result in sp.search.value.p.
It is used on the sugsrch.htmand srchidx.htm templates.

Parameters:

macro Specifies the variable to hold the search.

reset Specifies whether the new search is to be concatenated with the OR operator. If the
value is NO or omitted, it OR's the ORed list of terms onto the search. If the value is
YES, the list of terms becomes the search.

terms A comma-delimited list of terms.

fields The fields in which to search.

4 4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.fsi.list
Example:

[SP_ MACRO]sp.fsi.list termlist="sp.fsi.terms"
recordslist="sp.fsi.counts"[/SP_MACRO]

This macro provides
on the index.htm template. When the user clicks the Index button on the toolbar, then enters a term, a
list of terms displays.

sp.fsi.copytovariable

Example:

[SP_MACRO]sp.fsi.copytovariable
MACRO="sp.limit.la.contents”

FSI="LA"

longnamecontains="language" [/SP_MACRO]

This macro copies the contents of a field-specific index (FSI) to a specified variable. It allows FSIs to
be turned into Select lists. In the above example, the list "ALBANIAN, FRENCH, IROQUOIS"
might be put in the variable "sp.limit.la.contents." It is used in the srchcomn.htm
template to create the limit lists.

Parameters:

macro The variable name to contain the comma-delimited list of macro variables.
fsi The index to be used to supply the values.

longnamecontains The long name of the value in fsi.

Macro Variables

Following are the field-specific index macro variables:

sp.fsi.fields.p
Example: [SP_ MACRO]sp.fsi.fields.p[/SP_MACRO]

The sp.fsi.fields.p variable is used to present a list of fields to the user on the Index page.
The following section from index.htm shows how this macro variable is used:

<H2>Index of field "[SP_MACRO]sp.fsi.fields.p[/SP_MACRO]"</H2>

<p>Type all or part of a term, and select the index you would like to see, then press
Display.

Click on a term to search it.</p>

<p>Term: <INPUT NAME="sp.fsi.term.p"” SIZE="50">

Field:

<SELECT NAME="sp.fsi.fields.p.">

<option value="*F" [sp macro]sp.isinlist selections=sp.fsi.fields.p value="*F"
iftrue="SELECTED" [/sp_macro]>Free Text</option>

[SP_MACRO]sp.field.list criteria="*Separate" selected=sp.fsi.fields.p[/SP_MACRO]
</SELECT>

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

sp.fsi.term.p

Example:

[SP_MACRO]sp.assign macro="sp.fsi.term.p"
value=""[/SP_MACRO]

This macro variable provides the term the user wants to look up in the dictionary. It is used on the
index.htm template.

sp.fsi.howmany.p
Example: [SP_MACRO]sp.fsi.howmany.p[/SP MACRO]

This macro variable provides the value of how many items to scroll up or down. It is used in the
index.htm template to create a dropdown list as follows:

[sp macro]sp.fsi.howmany.pl[/sp macro]

terms

Field List Macro

The following macro command is used when working with a list of fields:

sp.field.list

Example:

[SP_ MACRO]sp.field.list
criteria="*SEPARATE"
selected=SP.FSI.FIELDS.P
[/SP_MACRO]

This macro offers a select list of fields; uses sp. field.criteria to choose, and puts the
selection in sp.field.choice. Itisusedinthe fielditm.htm, index.htm and
setfield.htm templates, and it takes arguments:

Parameters:
criteria Specifies the fieldset (as a comma-delimited list of fields) to be included in the list.
selected A comma-delimited list of fields already selected by the user.

The list of available fields appears when displayed by your browser after the words, "Fields to Show:"
on the Field Options list page. This page is accessed by the "Fields" and "Custom Fields..." buttons.

Thesaurus Term Macros

The macros in this section are used to display information about a thesaurus term and to allow the user to
pick, narrower, broader, and related terms to be used in searching. When the user clicks the Thesaurus
button on the toolbar and then enters a term, a Thesaurus Subject List (permuted list) is displayed. After
selecting a term from the list, the Thesaurus Term page displays with lists of selectable broader (more
general) terms and topical subheadings for the selected term.

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Macro Commands

Following are the thesaurus term macro commands:

sp.term.definition

Example:

[SP_MACRO]sp.term.definition
term=sp.thesaurus.term.p
[/SP_MACRO]

This macro inserts the definition of the term specified by ferm. It is used in the sugtermd.htm and
thesterm.htm templates.

sp.term.prepare_detail

Example:

[SP_MACRO]sp.term.prepare detail
term=sp.thesaurus.term.p
[/SP_MACRO]

This macro creates a number of internal comma-delimited lists for usage by the
sp.foreach macro. It is used in the thesterm.htm template.

Parameters:

ter The thesaurus term to be prepared.
m

Variables created are:
e sp.term.related terms--A comma-delimited list of terms related to this one.

e sp.term.narrower terms--A comma-delimited list of terms with narrower meaning to this
one.

e sp.term.broader terms--A comma-delimited list of terms with narrower meaning to this one.

e sp.term.search.p--Search to be used to find records for this term.

sp.expansionpart
Example:

[SP_MACRO] sp.expansionpart
text=sp.check.value
[/SP_MACRO]

This macro is used in the checkbox . htm template. Subheadings (stored in the
sp.age.subheading variable) are entered in the format searchvalue@readablevalue
This macro splits off the readable value so it can be displayed to the user.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

Macro Variables

Following are the thesaurus term macro variables:

sp.select.terms.pp
Example: [SP_MACRO]sp.select.terms.pp[/SP_MACRO]
This is a macro variable used in the suggest.htmand thesterm.htm templates. The
sp. foreach macro assigns it the values of ecach of a comma-delimited string of terms. See the

sp. foreach macro for additional information.

sp.perm.word.p

Example:
[SP_MACRO]sp.term.permuted list

termfrom="thesterm.htm"
word=sp.perm.word.p[/SP_MACRO]
This macro variable is the word being looked up in the permuted list. It is used in the subject.htm

template.

sp.age.subheading
Example: [SP_MACRO] sp.age.subheading[/SP MACRO]

This macro variable contains a comma-delimited list of age subheadings the user has chosen to

search.

sp.topical.subheading
Example: [SP_MACRO]sp.topical.subheading[/SP MACRO]
This macro variable contains a comma-delimited list of topical subheadings the user has chosen to

search. It is used in the srchterm. htm template.

sp.term.narrower_terms

Example:
[SP_MACRO]sp.foreach iterator="LIST"

list=sp.term.narrower terms
variable="sp.select.term"
filename="thesitem.htm" [/SP_MACRO]

This temporary macro variable contains a term's narrower (more specific) terms.

sp.term.related_terms

Example:

[SP_MACRO]sp.foreach
iterator="LIST" list=sp.term.related terms

variable="sp.select.term"
filename="thesitem.htm" [/SP_MACRO]

This temporary macro variable contains a term's related terms. It is used in the thesterm.htm

template.

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.thesaurus.term.p
Example: [SP MACRO] sp.thesaurus.term.p[/SP_MACRO]

This macro variable contains the current thesaurus term. It is used in the sugterm. htm,
sugtermd. htm, thesitemhtm, and thesterm.htm templates.

Guide Keyword Macros

This section describes the macro commands and macro variable which are used to access the database help

(guides) in a hypertext form.

Macro Commands

Following are the guide macro commands:

sp.guide.toc
Example: [SP MACRO] sp.guide.toc[/SP_MACRO]

This macro builds the guide tables of contents. It is used in the guidtoc. htm template.

sp.guide.topic
Example:

[SP_MACRO] sp.guide.topic
topic=sp.guide.topic
type=sp.guide.topic_ type
[/SP_MACRO]

This macro provides topics for a keyword chosen by sp.guide. keyword. It is used in the
guidtopc.htm template. The user selects a topic from the guide table of contents.

Macro Variable

Following is the guide macro variable:

sp.guide.dbname

Example:

[SP_MACRO]sp.assign macro="sp.template description™
interpret="yes" Value="sp.guide.dbname{—Guides}"[/SP_MACRO]

This macro variable is used in the guidtopc. htm template. It provides the database name for the

guide topic.

SilverPlatter Proprietary

Creating and Using Macros WebSPIRS Implementor’s Guide

Marked Records

Users can mark search results records and then display the list of marked records. Several macros are
involved in this process, including the macros which create checkboxes. Checkboxes are also used for other
purposes, such as selecting databases. This section describes the macro commands and macro variables used
in the marking of records.

Macro Commands

Following are the macro commands used in the marking of records:

sp.checked

Example:

[SP_MACRO] sp.checked
selection=sp.record.marked.pp
value=sp.makespurl
current= "sp.makespurl"

[/SP_MACRO]

This macro is used in generating a checkbox (<INPUT type="checkbox"). It fills in the word
checked by the user if the value= part is contained in the selection= part. The current= parameter is
a macro to run to get the current value. This macro is used in the recfmt.htm, recfmtck.htm,
and checkbox . htm templates.

sp.isinlist
Example:

[SP_ MACRO]sp.isinlist
selections=sp.limit.use.p
value="1"
iftrue="CHECKED"

[/SP_MACRO]

This macro supercedes the sp . checked macro. The parameter selections= supplies the list of
selected values, value= is the current value, and iffrue= provides the text to be supplied if the value is
in the selections; for example, "CHECKED" . Itisused in the sugterm.htmand index.htm

templates.

Macro Variables

Following are the macro variables used in the marking of records:

sp.check.name
Example: [SP MACRO] sp.check.name[/SP _MACRO]

This temporary macro variable is used in generating a checkbox. It contains the variable name the
checkbox is to use; that is, the value of the HTML NAME=. It is used in the checkbox.htm

template.

4-20 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.check.selections
Example:

[SP_MACRO] sp.checked selections=sp.check.selections
Value=sp.check.value[/SP_MACRO]

This temporary variable is used by the sp.checked macro to check items previously selected by the
user. It has a comma-delimited list of the selected values which is compared to the current value of
each checkbox. If there is a match, the checkbox is checked. It is used in the checkbox.htm
template.

sp.record.marked.pp

Example: [SP_MACRO]sp.record.marked.pp[/SP_MACRO]
This macro variable holds the list of records marked by the user. It is used in the recsmark. htm,
mrkclear.htm recfmt.htm and recfmtck.htmtemplates. The . pp extension causes it to
be handled somewhat differently from the . p extension. When using multiple values that may or may
not be displayed together, the . pp extension writes out the variable if it doesn't find the value in one
of the <INPUT> statements. (The .p extension writes out the variable as long as there is no
<INPUT> or <SELECTED> statement for the name.)

Miscellaneous Macro Support

Other macros are also included which do not fit into the above categories. This section describes the
miscellaneous macro commands and macro variables.

Macro Commands

Following are the miscellaneous macro commands:

sp.assign

Example:

[SP_MACRO] sp.assign
macro="sp.search.value.p"
reset="yes"
interpret="yes"
value="{(} sp.search.terml.p {)}

({ } sp.search.type2.p { (
({ } sp.search.type3.p { (
[/SP_MACRO]

sp.search.term2.p {)})
sp.search.term3.p {)})"

}
}
The sp.assign macro is used to set variables. This macro is found in most templates, and the head . htm
template has many examples of its use. It places the contents of the value parameter in the variable specified
by the macro parameter.

Parameters:

macro Specifies the macro variable whose value is to be assigned.

reset This equals either "yes" or "no". If "yes", the assignment takes place whether or not the
macro currently has value. If "no", the assignment only takes place if the variable has no
value. This is used to establish default values. If not specified, "reset=no" is assumed.

interpret This equals either "yes" or "no". If "yes", the value is interpreted based on rules specified
in the value parameter; if "no", the contents of value= is treated as a literal. If not
specified, "interpret=no" is assumed.

value The value that is to be assigned to the macro variable. Rules for interpreting the value

allow complex strings built from both literals and other macro variables to be built up.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

Following are the rules for the sp . assign macro:

o Literal strings must be enclosed by braces ({ }).

e Macro variables are left unquoted. Their values are inserted in the string.
¢ In clauses surrounded by (...) all the variables specified must be present.
Usage examples:

In the above sp . assign example, the value shown is placed in the sp. search.value.p macro. In the
following usage examples, the macro assigns "cat" or "dog."

sp.search.terml.p = cat sp.search.type2.p = or sp.search.term2.p = dog
sp.search.type3.p = or sp.search.term3.p = mouse value=" {(}
sp.search.terml.p {)} ({} sp.search.type2.p {(} sp.search.term2.p {)}) (
{} sp.search.type3.p {(} sp.search.term3.p {)}) evaluates to: "(cat) or
(dog) or (mouse)" 2. sp.search.terml.p = cat sp.search.type2.p = or
sp.search.term2.p = dog sp.search.type3.p = or sp.search.term3.p =
evaluates to: "(cat) or (dog)" (term3 is empty so there is no mouse.)

sp.foreach

Example:

[SP_MACRO]sp.foreach
iterator="SETID"
variable="sp.guide.dbid.p"
filename="guidprdb.htm"

[/SP_MACRO]

This macro repeatedly expands the macros contained in the specified filename. The expansion is controlled
by the iterator type.

Parameters:

iterator Specifies the kinds of iterations. Currently there are three kinds: SETID, DATABASE, and
LIST. SETID causes the macros contained in the specified filename to be expanded once for
each unique database SETID in the databases that are being searched. The DBID of one of
these is placed in the variable specified by the variable parameter. This allows things such as
guides and titles to be included only once. DATABASE causes the macros contained in the
specified filename to be expanded once for each database. The DBID is placed in the variable
specified by the variable parameter. LIST causes the macros contained in the specified
filename to be expanded once for each value in a comma-delimited list specified by the
additional /ist parameter.

list This is a comma-delimited list only valid for the LIST iterator.

variable This is the "macro variable" where the iterated value is to be placed. The macros being
expanded (read in from the specified file) can make use of this; for example, it can be used to
open a specific guide database.

filename Any file containing text and or macros to be repeated or inserted into the template.

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

sp.generate_url

Example:

[SP_MACRO] sp.generate url
nextform="thesterm.htm"
args="sp.thesaurus.term.p=sp.select.term”

[/SP_MACRO]

This macro generates a URL to another template within WebSPIRS. 1t allows another means of navigation
beyond buttons.

Parameters:

nextform Specifies the template to be loaded if the URL is followed.

args Specifies arguments to be added onto the URL. The "usernumber" and the "sp.dbid.p" are
added by default. args are evaluated so that the macro values to the right of the '=' are
replaced with their values. Multiples of "macro=value" must be strung together with "&". In
the above example, the URL might be:
"http://...I.../webspirs?sp.nextform=thesterm.htmé&sp.usernumber.p

=4&sp.dbid.p=MLSB&sp.thesaurus.term.p=neoplasms
sp.include
Example:

[SP_MACRO] sp.include
filename="srcrrslt.htm
source='_search’
record="1"
action='record.show'"

[/SP_MACRO]

The sp . include macro reads in the template file specified by £1ilename=, interprets any macros, and
inserts the result in the form. Text after the filename is treated as arguments.

sp.if

Example:

[SP_MACRO]sp.if condition="EQ"
leftvalue="1"
rightvalue=sp.search.numberofinputs.p
then=[sp block]..[/sp block]

else=[sp block]..[/sp block]
[/SP_MACRO]

The sp . 1 f macro provides for a conditional "if-clse" programming statement. In the above example, if the
leftvalue (1) equals the rightvalue (the sp.search.numberofinputs.p variable), then an
action is performed. Or else (if the left and right values are not equal), then another action is performed.
Note that the e1se parameter is optional.

This macro evaluates a condition. The condition= value can be EQ (equal), NE (not equal), GT (greater
than), LT (less than), GE (greater than or equal to), or LE (less than or equal to). EQ will work if you are
comparing numbers or strings. If you don't set anything, then you are comparing strings. If there is a type=
parameter and it is "numeric", the leftvalue and the rightvalue must be numbers. Each of the two
resulting [sp block] ..[/sp block] setof tags contain macro-encoded HTML.

Variations of the sp . if macro are the sp.iffirst, sp.iflast, sp.ifnotfirst, and
sp.ifnotlast macros.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

Macro Variables

Following are the miscellaneous macro variables:

sp.output
Example:

[SP_MACRO]sp.assign
macro="sp.output"
value= "mail" [/SP MACRO]

The sp.output macro variable is used with the "", "mail", and "file" values. It scts the next page to
the screen, mail, or a file respectively. It is used in the exphtml . htm, expmail.htm, and
saveopts.htm templates.

sp.mailcmd

Example:

[SP_MACRO]sp.1if leftvalue= "1"
condition= "EQ"

rightvalue= sp.mailcmd

then=[sp block].... [/sp_block] [SP_MACRO]

This macro variable is set in the webspirs. cfg file to a value of "1" and indicates that mail is activated.
It runs the spmail script when mail is selected. When WebSPIRS runs the command for the script, it
invokes two parameters. The first is the filename of the text to mail, and the second is the Email address the
user fills in on the Mail Records page. This variable is used on the rechits . htm template.

Adding Macros

If you want to create additional macros, you can do so using the C++ programming language. You will also
need the following:

e (C++ compiler to add functions
e Text editor to test and configure the interface
e (Code libraries and related documentation

For documentation you will need the SilverPlatter CORE Reference Manual and the SilverPlatter CORE
Wrapper Reference Manual. The details of the WebSPIRS application program interface (API) are provided
in Chapter 5.

If you are planning to create new macros, send an electronic mail message to Yogen Pathak at
YogenP@§SilverPlatter.com and request to become a participant in the WebSPIRS Developer Program. He
can also provide copies of the appropriate SilverPlatter documentation.

Helpful CGI test scripts and form decoding software programs can be found in the Common Gateway
Interface specification .

4 4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Building WebSPIRS

You can build WebSPIRS on either a 32-bit Windows operating system or on a UNIX system. The following

steps explain how to build WebSPIRS on a UNIX system:

1. Unzip the webspirs.zip file. The files will unpack into the following directories:

e cgibaby
e cgichild
e cgiadult
e include
e cgiprocs
Note: The type of HTTP server you use can influence the directory structure.

2. Use the make utility:

make

3. Run WebSPIRS by doing the following:
cgichilds&

(sends test.reqg request)
4. Edit the erlclnt. cfg file to include the server information.

5. Edit the webspirs.cfg file and change the "template directory”

Instructions for editing the configuration files can be found in Chapter 2, “Installing and Configuring

WebSPIRS.”

C++ Language Implementation

The C++ macros are slightly more complicated to set up initially but are easier to implement than the C
macros, and they offer a means (through the derived www_HTML_Helper class) to allocate things that
persist beyond the scope of the macro. For instance, the www_Search class holds the current search and the

www_Database class holds the current database.

SilverPlatter Proprietary

Creating and Using Macros WebSPIRS Implementor’s Guide

Implementing a new www_HTML_Helper Class

Complete the following steps to implement a new www_HTML_Helper class:

1. Code the class in the header file (hpp). There must be a constructor that takes one argument, a pointer
to

the www_Request class, and there must be a destructor. Here is an example from the wwwsrch. hpp
header file:

class www_Search : public www_ HTML Helper
{
/*
purpose:
<l>hangs onto the search for the length of the request
<2>interprets the ASL macro
<3>gets the parsed search text or reports an error
<4>does thesaurus stuff
*/
public:
wwWww_Search (www_Request *callersRequest);
virtual ~www_Search();
void Reset(); //method called at end of request, we delete the search
core RecordArray *GetRecords(const prString &callersSource);
static const prString &GetASLList (const char *callersMacro,
www_HTML Helper *callersThis);
static const prString &GetSearchText (const char *callersMacro,
www_HTML Helper *callersThis);
static const prString &GetTermDefinition (const char *callersMacro,
www_HTML Helper *callersThis);
static const prString &PrepareTerm(const char *callersMacro,
www_HTML Helper *callersThis);
private:
core_ Search *mySearch; // record array returned by GetRecords,
// class deletes it at the end
}i

2. In the implementation (.cpp file), declare an instance of the template:
"www_HelperConstructor<...>"
This serves to connect the newly implemented helper class to WebSPIRS.

Here is an example of a static instance that adds the www_Search class constructor to the table of
helpers:

"www_HelperConstructor<www Search>MakeAwwwSearch;
3. Create a table of macro names and macro expansion functions (much like in the C macro section).

If the functions need to make use of private data held by the "helper" class, they should be static
members (as above). Otherwise, they may just be functions with file scope (declared statically within
the module).

The last entry in the table should be {0,0} to let the initialization code in www_HTML_Helper
know that the last macro has been encountered.

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Here is an example:

static www_HTML Helper::wwwMacroDef wwwSearchMacroTable[] =
{
{"sp.asl.list",www_Search::GetASLList},
{"SP.RECORD.SEARCH", www_Search: :GetSearchText},
{"sp.term.definition",www_Search::GetTermDefinition},
{"sp.term.prepare _detail",www_Search::PrepareTerm},
{0,0}
}i

This table should be passed to the helper via the "Init" method in the constructor. Here's the
www_Search constructor:

wWww_Search: :www_Search (www_Request *callersRequest)
:www_HTML Helper (callersRequest)
{

mySearch = 0;
Init (wwwSearchMacroTable) ;

}

Coding C++ Macro Functions

Complete the following steps to code a C++ macro function:

1. Add the function name to the above table macros.

2. Be sure the macro function prototype looks like the following:
FunctionName(const char *callershMacro, www_HTML_Helper
*callersThis);
callersMacro is the text of the macro starting with the macro itself and ending after its last argument.
For example, the GetASLList macro might have been coded in the template as:

[sp_macrolsp.asl.list
phrase="happy to meet you"
limit="5"

[/sp_macro]

the string in callersiMacro would be:

sp.asl.list phrase="happy to meet you" limit="5"

callersThis is the pointer to the www_HTML_Helper class that contains this macro. It must be cast
if you need to use any data special to it. For instance:

www_Search *me = (www_Search *)callersThis;

3. The macro must return a reference to a string which contains the macro-expanded text. The string may
be empty. To get the string filled use:

prString &myExpansion = callersThis->GetExpansionString();
myExpansion = prNullString;

Note: You should make sure to initialize the expansion string as it may contain the value from the
last macro the helper expanded.

SilverPlatter Proprietary 4

Creating and Using Macros WebSPIRS Implementor’s Guide

To add a macro to write "Hello World" to www_Search you would:

// function prototype
static const prString &CppHelloWorld(const char *callersMacro,
const char *callersThis);

// add to function table
static www_HTML Helper::wwwMacroDef wwwSearchMacroTable[] =

{
{"sp.asl.list",www_Search::GetASLList},

{"SP.RECORD.SEARCH", www_Search: :GetSearchText},
{"sp.term.definition",www_Search::GetTermDefinition},
{"sp.term.prepare _detail",www_Search::PrepareTerm},
{"sp.cpp.Hello.World",CppHelloWords}
{0,0}
}i

/7
// expand to hello world when [sp macro]sp.cpp.hello.world[/sp macro]
// is found in the template

/7
const prString &CppHelloWorld (const char *callersMacro,
const char *callersThis)

{

prString &theExpansion = callersThis->GetExpansionString() ;
theExpansion = "Hello World";
return theExpansion;

}

Useful Services Available to the Macro

The following are some generally useful services available to the macro:

o The www_Request class is accessible by way of the following:

www_Request *request = callersThis->GetRequest();

The request contains all the HTTP request values received from the user. They may be accessed via
the core_Config API (sece Chapter 4). Here is an example:

prString mySearch =
callersThis->GetRequest () ->GetItem("sp.search.value.p","");

The macro is free to store new items in the request as in:

callersThis->GetRequest () ->Storeltem("sp.newvariable"”,"a new value");

If the variable name ends in ".p" the variable will be included in the form as a hidden variable.

e The database(s) involved in the request.

core Database *db = callersThis->GetRequest()->GetDatabase();
if (db == 0)
return (prNullString) ;

This will open the database if this is the first macro to call GetDatabase().

e Get the set of records currently in use by the request:

core RecordArray *records = callersThis->GetRequest()->GetRecords();

4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Creating and Using Macros

Interpretation of the macro arguments is handled by way of the InterpretArguments method. If the
callersMacro contains:

argl="halleluia" arg2="im a bum"
core Config * cfg = callersThis->InterpretArguments (callersMacro);
myArgl = cfg->GetItem("argl”,"");
myArg2 = cfg->GetItem("arg2","");
delete cfg;

myArgl myArg2 will contain "im a bum".

¢ Read a file from the WebSPIRS default template directory:

prString LoadGatewayFile (const prString &callersFilename,
prString &callersReturnFileName,
prString &callersReturnTemplateArguments) ;

The first string is the filename to be loaded, the second string will contain the actual filename loaded,
and the third will contain any decorations added at the end of the filename (only used by the
www_Template class at the moment). The string returned is the contents of the file.

e The following methods generate various kinds of HTML:
/7

// makes <option value="callersValueArg">callersText</option> entry
// will insert SELECTED attribute if wvalue= matches contents of
// comma-delimited list in callersSelections
//
prString MakeOptionHTML (const char *callersValueArg,
const char *callersText,
const prString &callersSelections);
//
// makes a checkbox: <INPUT TYPE="CHECKBOX"
// NAME="callersVariableName"
// VALUE="callersValue">callersText</input>
// check box i1s CHECKED if value matches one of the comma-delimited
// values in callersSelections
//
prString MakeCheckboxHTML (const char *callersVariableName,
const char *callersValue,
const char *callersText,
const prString &callersSelections);
//
// makes the prompt markup
//
prString MakeHyperLink (const prString &callersPrompt,
const prString &callersHREF);
//
// creates a URL to the gateway aimed at the specific form
// this will include certain defined bits of context:

// sp.usernumber.p & sp.dbid.p, anything else can be shoved in

// in extra arguments as tag=value&tag=values&...

// if the DbId argument is left prNullString, the sp.dbid.p= will default to the
// currently open database

/7

prString MakeUrl (const prString &callersDestinationForm,
const prString &callersDbId = prNullString,
const prString &callersExtraArguments = prNullString):;

SilverPlatter Proprietary 29

WebSPIRS Implementor’s Guide

WebSPIRS Class Library

Chapter 5 - WebSPIRS Class Library

This chapter details the WebSPIRS application program interface (API) which was written in the C++
programming language and includes the following classes:

cgi_Config
dxp_to_html
erlAdmin
erlAdmin_DBInfo
erlAdmin_UserInfo
segml_Field
www_Admin
www_Alert
www_Arguments
www_Database
www_Environment
www_ERLConnection
www_Field

www_FSI
www_Guide
www_HTML_Helper
www_Macro
www_MacroCaller
www_Record
www_Request
www_Search
www_Server
www_Template
www_User
www_Wild

The classes appear in this chapter in alphabetical order. The following hierarchical class drawing shows the
inheritance and relationships of the classes. In the drawing, a solid line indicates inheritance and a broken
line indicates relationship. The classes core_Config, core_Environment, core ERLConnection, and
core_Field, which are shown in the drawing, are described in the SilverPlatter CORE Wrapper Reference

Manual.

www_Search

www_Record

www_Database

core_Config |

|_,| cgi_Config |

www_Request I X

WWW_Arguments |

| www_Macro |

www_Template

| core_ERLConnection |

www_FSI

www_ERLConnection |

www_Guide

| core_Environment |

www_Field

www_Environment |

www_User

core_Field |

www_Admin

IR NN

www_Wild

11

erlAdmin |

erlAdmin_DBInfo |

erlAdmin_UserInfo |

|—»| sgml_Field |

Standalone classes

dxp_to_html |

www_Alert |

www_Server |

SilverPlatter Proprietary 5-1

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class cgi_Config

See Also: cgiconfg.hpp

The class cgi_Config adds HTTP/URL coding and decoding. | core_Config |
It handles the reading of common gateway interface (CGI) =
requests. This class inherits from class core_Config. |—|

cgi_Config |

See the SilverPlatter CORE Wrapper Reference Manual for details on the core_Config class.

Public Member Functions

The following are public member functions of class cgi_Config:

cgi_Config
cgi_Config();

A class constructor.
cgi_Config(const cgi_Config &from);

A copy constructor.

~cgi_Config
virtual ~cgi_Config();

The class destructor.

operator=
const cgi_Config &operator = (const cgi_Config &from);

The assignment operator.

AddEnvironment

void AddEnvironment (const char *callersEnvp[]);

Stores the application’s environment tag=values in the CORE’s configuration object.

AddArguments
void AddArguments (int callersArgc, const char *callersArgv(]);

Stores the application’s arguments in the CORE’s configuration object.

AddHttpTags
void AddHttpTags (const char *callersHtipString);

Stores the string of URL-encoded tag=values in the CORE’s configuration object. These are not URL
encoded.

5-2 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

AddTags
void AddTags (const char *string, char delim = <,’);

Stores a string of comma-delimited values in the CORE’s configuration object. These are not URL
encoded.

RolelnDefaults
void RoleInDefaults();

Roles any [default.] tags into the real value.

ConvertToHttp
prString ConvertToHttp();

Takes all the configuration tags and builds a large URL-encoded string of tag=values.

AppendCfg
void AppendCfg (core_Config &callersConfig, boolean callersReplace = cFALSE);

Takes all the tag=values in callersConfig and merges them into itself (cgi_Config class). The
callersReplace parameter causes existing tags to be replaced. If cTRUE, the tags duplicated will be
replaced; if cFALSE, the old values will hold.

Mergeltem
void Mergeltem(const char *callersTag, const char *callersValue);

Puts the value in callersValue on the end of the value already stored in callersTag.

Dump
prString Dump();

This is a debug routine to format all the tag=value contents of the configuration.

ReadRequest
void ReadRequest();

Reads a request from stdin as part of the CGI interface.

URLEncodeString
static void URLEncodeString (prString &dest, const uchar *src);

URL encodes src and appends it onto dest.

SilverPlatter Proprietary 5-3

WebSPIRS Class Library WebSPIRS Implementor’s Guide

URLDecodeString
static void URLDecodeString (prString &dest, const uchar *src);

URL decodes src and appends it onto dest.

RestoreCodedCharacters
static prString RestoreCodedCharacters(const char *callersCodedString);

This method restores certain coded characters that get in the way of URL Processing. For example, “>"
which is used in the find syntax and is turned into .GT .

5-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class dxp_to_html

See Also: File dxp2htm. hpp

The standalone class dxp_to_html knowledge of how to turn DXP-formatted text into HTML-
formatted text.

Public Member Functions

The following are public member functions of class dxp_to_html:

dxp_to_html
dxp_to_html (core_Database *callersDb =0);

The class constructor.

~dxp_to_html
~dxp_to_html()

The class destructor.

SetDatabase
dxp_to_html &SetDatabase(core_Database *callersDb);

This method lets the DXP to HTML converter make use of database information, particularly to build
hotlinks.

SetTranslateFromDos

dxp_to_html &SetTranslateFromDos (boolean callersTranslateFromDos);

Translates the PC character set to the ISO Latin character sct.

SetRequest
dxp_to_html &SetRequest (www_Request *callersRequest);

Allows the class to access information about the current request. Used when building a URL for hotlinks.

Convert
const prString & Convert (const prString &the DXPText);
Translates DXP text into HTML.

SilverPlatter Proprietary 5-5

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class erlAdmin
See Also: File erladmin.hpp

The base class erlAdmin establishes congruence between the Network CORE-based network access and the
administrative-based network access. It involves the copying of globals. This class should be called after the
core_ERLConnection class has been constructed.

Protected Member Functions

The following are the protected member functions of class erlAdmin:

erlAdmin
erlAdmin();

The class constructor.

~erlAdmin

virtual ~erlAdmin();

The class destructor.

5-6 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class erlAdmin_DBInfo

See Also: File erladmin.hpp

The helper class access to | erlAdmin |
administrative information about a server that is not available
through the Network CORE, in particular, the cost per record. erlAdmin_DBInfo |

Information is cached inside the database so that the number
of messages is kept to a minimum.

The SetDatabase method must be called prior to accessing information because this provides the connection
to the database and the place to cache the information.

Public Member Functions

Following are the public member functions of class erlAdmin_DBInfo:

erlAdmin_DBinfo
erlAdmin_DBInfo();

The class constructor.

~erlAdmin_DBInfo
~erlAdmin_DBInfo();

The class destructor.

GetCostPerRecord
ulong GetCostPerRecord();

Returns the cost per record from ERL to WebSPIRS.

GetCostPerAbstract
ulong GetCostPerAbstract();

Returns the cost per abstract (the AB field) from ERL to WebSPIRS.

SetDatabase
erlAdmin_DBInfo &SetDatabase(core_Database *callersDb);
Sets the database from which the records will be retrieved. This must be called prior to accessing

information. It provides the connection to the database and the place to cache the information. It also
identifies the server.

SilverPlatter Proprietary 5-7

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class erlAdmin_UserInfo
See Also: File

The class erlAdmin_UserInfo provides access to | erlAdmin |
administrative information about a user. The information is
not cached. The SetUserName method must be called prior |—| erlAdmin_UserInfo |

to accessing the information.

Public Member Functions

Following are the public member functions of class erlAdmin_UserInfo:

erlAdmin_Userinfo
erlAdmin_UserInfo();

The class constructor.

~erlAdmin_Userinfo

virtual ~erlAdmin_UserInfo();

The class destructor.

SetUserName

void SetUserName(const char *callersUserName);

This function sets the username to be inquired about. It must be called prior to accessing information.

SetServer

void SetServer(const char *callersServerName);
void SetServer(core_Database *callersDb);

This method sets the server to be asked questions about the user. If this is not called, all servers are asked,
total charges are totaled, and other values are minimized.

GetUserName

const char *GetUserName();

This function gets the user’s name.

5-8 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetUserld
const char *GetUserld();

This function gets the user’s ID.

GetTotalCharge
DWORD GetTotalCharge();

This function gets the total charge. This is the amount charged cumulatively for the user.

GetMaxCharge
DWORD GetMaxCharge();

This function gets the maximum charge. This is the total amount that can be charged for the user; that
is, the charge up to the account balance.

GetNumberCurrentlyLogged
WORD GetNumberCurrentlyLogged();

This function gets the number of users currently using this username account.

GetTotalLogins
WORD GetTotalLogins();

This function returns the total number of times this account has been used.

SilverPlatter Proprietary 5-9

WebSPIRS Class Library

WebSPIRS Implementor’s Guide

Class sgml_Field

See Also: sgmlfld.hpp

The class sgml_Field provides standard generalized markup
language (SGML) format for searching full content databases
(the full content of an article is retrieved).

Public Member Functions

The following are public member functions of class sgml_Field:

core_Field |

|—| sgml_Field |

sgml_Field
sgml_Field(core_Database *theDb = 0);

sgml_Field(const core_Field &from);

The class constructors.

~sgml_Field
virtual ~sgml_Field();

The class destructor.

SetFieldName
void SetFieldName(const prString &theFieldName);

This function sets the name of the field.

GetContentType
prString GetContentType();

This function gets the content type.

GetContentField
prString GetContentField();

This function gets the contents of a field.

5-10 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

WebSPIRS Class Library

Class www_Admin

See Also: File wwwadmin. hpp

The class www_Admin provides macros that set and get
administrative information from an ERL server. This

information is used with the usage based pricing (UBP)
WebSPIRS client.

Public Member Functions

Following are the public member functions of class www_Admin:

| www_HTML _Helper |

www_Admin |

www_Admin

www_Admin(www_Request *callersRequest);

The class constructor.

~www_Admin

virtual ~www_Admin();

The class destructor.

GetCostPerAbstract

static const prString &GetCostPerAbstract (const char *callersMacro, www_HTML_Helper

*callersThis);

This function provides the cost of a record using the abstract (AB) field.

SilverPlatter Proprietary

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Alert
See Also: File wwwalert.hpp

The class www_Alert provides macros for the selective dissemination of information (SDI) alerting service.
It provides information about new records.

Public Member Functions

Following are the public member functions of class www_Alert:

www_Alert

www_Alert(www_Request *callersRequest);

The class constructor.

~www_Alert
virtual ~www_Alert();

The class destructor.

AddAlert
static const prString &AddAlert (const char *callersMacro, www_HTML_Helper *callersThis);

This function causes the search to be run as an alert.

EvaluateAlert
static const prString &EvaluateAlert (const char *callersMacro, www_HTML_Helper *callersThis);

This function finds out if there are new records for the search.

Reset
void Reset();

This function cleans up the results of an alert.

5-12 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

WebSPIRS Class Library

Class www_Arguments
See Also: File wwwhelper.hpp

The class www_Arguments stores a block of text and interprets
the block of text. It is used with nested macros which are
included as arguments to other macros by way of the
[SP_BLOCK] ..[/SP_BLOCK] tags.

cgi_Config |

|—| www_Request |

www_Arguments

www_Arguments();
www_Arguments(const www_Arguments &firom);

The class constructors.

~www_Arguments
virtual ~www_Arguments();

The class destructor.

Public Methods

Following are the public methods of class www_Arguments:

operator=

const www_Arguments &operator=(const www_Arguments &fron);

The assignment operator.

SetRequest
void SetRequest(www_Request *theRequest);

Makes the request available to arguments for processing.

GetRequest
www_Request *GetRequest() const

Gets the request sct by SetRequest.

AddExpandTag
void AddExpandTag(const prString expandlag);

This method copies your tag into a buffer (if a buffer is supplied) and returns a pointer to the item. It can

give you a number or string and supply the default value.

SilverPlatter Proprietary

5-13

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Getltem

const void *Getltem(const char *7ag, void *Buffer = 0, uint Buflen = 0) const;
ulong Getltem(const char *7ag, ulong DefaultValue) const;

const char *Getltem(const char *7ag, char *DefaultlValue) const;

Copies your fag into a buffer if a buffer is supplied. It returns a pointer to the item, a number, or a string.
If a [sp_block]...[/sp_block] is being processed, the contents of the “block™ are interpreted as if it
were a template file.

5-14 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class www_Database
See Also: Files wwwdb . hpp wwwdb . cpp

The www_Database class provides methods for expanding | www_HTML_Helper |
database lists, adding title screens, and opening the database(s) |_|
needed by the request. This class is for SP internal use only. www_Database |

Public Member Functions

The following are public member functions of class www_Database:

www_Database
www_Database(www_Request *callersRequest);

The class constructor.

~www_Database
virtual ~www_Database();

The class destructor.

GetDatabase

virtual core_Database *GetDatabase()

Gets the specified database.

Reset

virtual void Reset();
Freezes any memory being used by the class.

HTML Expansion Methods

The following methods expand database elements to HTML in the template.

GetDatabaseName
const prString &GetDatabaseName(const char *callersMacro = 0);

This method uses the sp . dbname macro to expand the database name to HTML.

SilverPlatter Proprietary

5-15

WebSPIRS Class Library WebSPIRS Implementor’s Guide

DatabaseForEach

const prString &DatabaseForEach(const char *callersMacro = 0);
This method uses the sp.avail.dbs. foreach macro to expand the database list to HTML.

GetDatabaseDescriptions

const prString &GetDatabaseDescriptions(const char *callersiMacro = 0);

This method uses the sp.database.descriptions macro to expand the database(s) descriptions to
HTML.

GetDatabaseTitleScreens
const prString &GetDatabaseTitleScreens(const char *callersMacro = 0);

Expands the title screen(s) of the database(s) to HTML.

GetListForEach

const prString &GetListForEach(const char *callersiMacro = 0);

This method uses the sp. opened. dbs. foreach macro to expand the database checklist to HTML.

GetDatesCovered
const prString &GetDatesCovered(const char *callersiMacro = 0);

Expands the dates covered by the database to HTML.

GetDatabaseTag

const prString &GetDatabaseTag(const char *callersMacro = 0);
This method inserts the contents of a database information tag into the form.

MakeWinspirsLink
const prString & MakeWinspirsLink(const char *callersMacro = 0);
Expands the WinSPIRS link to HTML.

5-16 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

BuildAllFieldSets
static void BuildAllFieldSets(core_Database *theDb);

This is an internal routine which builds the fieldsets that the WebSPIRS interface expects. These are:
*R — The list of “reference fields” for full text databases.

*H — The include fields with the hits “field”

*A — The all fields fieldset

*F — The free text fields fieldset

*SEPARATE — The fields with a separate index. Used for the index display

SilverPlatter Proprietary 5-17

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Environment

See Also: wwwenv. hpp

The www_Environment class performs chores necessary to | core_Environment |

start the Content Operative Retrieval Engine (CORE) and

creates and provides global access to the list of available www_Environment |
databases.

Public Member Functions

Following are the public member functions of class www_Environment:

www_Environment

www_Environment(const char *ConfigFile = 0, const char *errMsgFile = 0, const char *debugkFile =0,
uint /d/leRate = HIGHVAL(uint));

The class constructor.

~www_Environment

virtual ~www_Environment();

The class destructor.

Start
virtual void Start();

After constructing the class, the application must call Start to initialize memory.

Idle

virtual boolean www_Environment::Idle(boolean Force);

This function was for the WINDOWS environment, but is no longer used.

Assert

virtual void Assert(const char *filename, uint linenumber, const char *exp = 0);

Use this function if your environment is defined as WIN32. If a program encounters a fatal condition,
call Assert. The program will display a message and then die.

5-18 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetCurrentDatabaseList
core_CoreDBList *GetCurrentDatabaseList();

This function returns the current database list.

GetDatabaselL.ist
core_CoreDBList *GetDatabaseList();

This function returns the database list after checking that the erlclnt.cfg
rebuild the list if it has.

RemoveDatabaselist

void RemoveDatabaseList();

This function removes the database list so you can build a new one.

SetRequest

void SetRequest(www_Request *thisRequest)

This function sets the request in thisRequest.

GetPtr

static www_Environment *GetPtr();

This function gets a pointer to the www_Environment class and can get a database list from it.

GetERLPath
prString GetERLPath();

This function gets the ERL path.

SilverPlatter Proprietary 5-19

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_ERLConnection
See Also: wwwerl.hpp

The class www_ERLConnection provides the login | core_ ERLConnection |
functions for the ERL connection.

www_ERLConnection |

Public Member Functions

Following are the public member functions of class www_ERLConnection:

www_ERLConnection

www_ERLConnection(core_Config &config, const char *eriCfgPath, const char *logFile = 0);

The class constructor. This will create a log file if JogFile is not equal to zero. If the first character of the
filename is ‘+’, append mode opens.

~www_ERLConnection

virtual ~www_ERLConnection();

The class destructor.

Refresh

virtual boolean Refresh();

This function checks to see if the database list has changed and rebuilds it and returns cTRUE if it has.

LoginFailed

boolean LoginFailed() const;

This function provides information when a login fails; for example, when an incorrect username and/or
password is entered.

FatalErrorOccurred

boolean FatalErrorOccurred() const;

This function provides information when a fatal error occurs; that is, when an unrecoverable error occurs.

SetClientAddress
void SetClientAddress(const prString &callersClientAddress);

Sets the information provider’s address--the callersClientAddress.

5-20 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

WebSPIRS Class Library

GetClientAddress
const prString &GetClientAddress()

Returns the information provider’s address sct by SetClientAddress.

PasswordExpired

boolean PasswordExpired() const

WebSPIRS calls this function to find out if the tells the password has expired.

GetExpiredServer
const prString & GetExpiredServer() const

This function returns information about the expired server.

SetRequest

void SetRequest(www_Request *theRequest)

This function sets the request in theRequest.

SetNewPassword

const void SetNewPassword(const prString &newPassword)

This function sets the password in newPassword.

SetConfirmPassword

const void SetConfirmPassword(const prString &newPassword)

This function confirms the password in newPassword.

GetErrorMessage

const prString &GetErrorMessage() const;

This function returns an error message.

SetErrorMessage

www_ERLConnection &SetErrorMessage(const prString &callersErrorMessage);

This function sets the error message in callersErrorMessage.

SilverPlatter Proprietary

5-21

WebSPIRS Class Library WebSPIRS Implementor’s Guide

GetSelf
static www_ERLConnection *GetSelf()

This function returns the caller’s ERL connection.

Protected Member Functions

Following are the protected member functions of class www_ERLConnection:

ShowMessage

virtual void ShowMessage(const char *servername, const char *msg);

This function displays a message from the server. This need not be an error message.

Login
virtual uint Login (const char *servername, const char *serverid);
The server calls to get the username and password. This function returns O if they are correct; otherwise,

it returns cLOGIN CANCEL. The username and password should be put in the appropriate prStrings of
SetNewPassword and SetConfirmPassword.

BadUser

virtual uint BadUser(const char *servername, const char *serverid);

This function displays a login error message which comes back from the server. It may call Login to retry
if desired; otherwise, it returns cLOGIN CANCEL.

PasswordExpired

virtual uint PasswordExpired(const char *servername, const char *serverid);

This function displays a login error message which comes back from the server. It may call Login to retry
if desired; otherwise, it returns cLOGIN CANCEL.

MaxUsers

virtual uint MaxUsers(const char *servername, const char *serverid);

This function informs the user that ERL has reached the maximum number of users. There is no point in
redoing the login; they can try again later.

5-22 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

DXPError

virtual void DXPError(const char *servername, const char *dbid, const char *dbname, ulong reqiD,
boolean error, uint dxs_error, const char *usermsg, const char *devmsg);

This function returns various error messages.

ProtocolError
virtual void ProtocolError(const char *servername, uint error_code, const char *msg);
This function returns an error message which has been formatted using the CORE’s LastErrorMsg()

interface. If not properly initialized (see the mmEnvironment class in the SilverPlatter CORE Wrapper
Reference Manual), it will be blank.

ConnectionDied

virtual boolean ConnectionDied (const char *servername, const char *dbid, const char *dbname,
boolean can_retry);

If can_retry is cTRUE, the network layer should try to reestablish the connection.

SilverPlatter Proprietary 5-23

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Field
See Also: wwwfield.hpp

The class www_Field expands field table type requests | www_HTML_Helper |

into lists of fields. www_Field |

Public Member Functions

Following are the public member functions of class www_Field:

www_Field

www_Field(www_Request *callersRequest);

The class constructor.

~www_Field

virtual ~www_Field();

The class destructor.

GetFieldList
const prString & GetFieldList(const char *callersMacro = 0);

This function produces a list of fields that are hardwired in the option list format.

GetFieldListForEach
const prString & GetFieldListForEach (const char *callersiMacro = 0);

This function produces a list of fields. Using a macro, the items in the list can be turned into checkbox or
radio button items. This method is preferred over GetFieldList.

5-24 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class www_FSI
See Also: File wwwfsi.hpp

The class www_FSI provides field specific index (FSI) type | wiw_HTML,_Helper |

requests. This class is for SP internal use only. |_| E— |

Public Member Functions

The following are public member functions of class www_FSI:

www_FSI
www_FSI(www_Request *)s

The class constructor.

~www_FSI
virtual ~www_FSI();

The class destructor.

Reset
void Reset();

This method deletes the core_DictionaryWord used by the FSIList code.

GetFSlList

static const prString &GetFSIList(const char *callersMacro, www_HTML_Helper *callersThis);
This method produces a list of words based on the criteria. It uses the sp. £si.11ist macro.

FSIToSearch

static const prString &FSIToSearch(const char *callersiMacro, www_HTML_Helper *callersThis);

This method produces a list of words based on the criteria. It uses the sp. £si.tosearch macro,
which displays the dictionary words for a field-specific index.

DoFSIToc
static const prString &DoFSIToc(const char *callersMacro, www_HTML_Helper *callersThis);

This method uses the sp. £s1i. toc macro and produces a list of words based on the criteria.

SilverPlatter Proprietary 5-25

WebSPIRS Class Library WebSPIRS Implementor’s Guide

CopyToVariable
static const prString & CopyToVariable(const char *callersMacro, *callersThis);

This method uses the sp. £fsi.copytovariable macro and copies the contents of a field-specific
index (FSI) to a specified variable. This allows FSIs to be turned into Select lists.

PreprocessRequest

virtual void PreprocessRequest(core_Config & femplateArguments);
This method handles next and prev index scrolling.

5-26 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

WebSPIRS Class Library

Class www_Guide
See Also: File wwwguide. hpp

The class www_Guide provides the
to hold any macros needed to access SilverPlatter guides from
a template. This class is for SP internal use only.

Public Member Functions

The following are public member functions of class www_Guide:

| www_HTML _Helper |

www_Guide

www_Guide
www_Guide(www_Request *callersRequest);

The class constructor.

~www_Guide
virtual ~www_Guide();

The class destructor.

MakeGuideToc

const prString & MakeGuideToc(const char *callershMacro);

This method uses the sp. guide. toc macro which displays the guide table of contents.

MakeGuideTopic
const prString & MakeGuideTopic(const char *callershMacro);

This method uses the sp. guide. topic macro which inserts the text for the guide topic.

GetGuideDBName

const prString & GetGuideDBName(const char *callershMacro);

This method uses the sp . guide. dbname macro which is replaced with the database name of the guides

that are being expanded.

SilverPlatter Proprietary

5-27

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_HTML _ Helper

See Also: Files wwwhelpr.hpp and wwwhelpr.cpp

The base class www_HTML_Helper base support for interpreting macros and expanding them
in HTML. It provides routines for building the contents of an option list. It also provides lookup for
searching the macros owned by the class and calling the appropriate expansion macros on a match. This
class uses the www_Request class for access to the values of tags and global items like the database.

Public Member Functions

The following are public member functions of class www_HTML_Helper:

www_HTML_Helper

www_HTML Helper(www_Request *callersRequest);
The class constructor.

~www_HTML_Helper

virtual ~www_HTML Helper();
The class destructor.

Init
void Init(wwwMacroDef *callersiacros);

Provides a table of macro handlers for the class to use in expanding macros coded in the template. The
last entry should be 0,0.

GetName

const prString &GetName() const;
Gets the name of the helper.

5-28 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

SetName

www_HTML Helper &SetName(const prString & callersName);
Set by the static helper creator template class.

Macro Expansion Methods

The following are macro expansion methods of the class www_HTML_Helper:

Lookup

virtual const prString &Lookup(const char *key);
Expands key into the requisite HTML; each helper need only implement those keys it knows about.

GetKeyFoundFlag

boolean GetKeyFoundFlag() const;
Lets the caller know whether the key was processed, since prNULLSTRING is a valid return from Lookup.

SetKeyFoundFlag

www_HTML_Helper &SetKeyFoundFlag(boolean callersKeyFoundFlag);
Internal method for determining that a macro expansion has taken place.

Utility Methods

The following are utility methods of class www_HTML_Helper:

PreprocessRequest

virtual void PreprocessRequest(core_Config & callersArguments),
Allows helpers to interpret things like sp. record. action before the form is interpreted.

GetRecords

virtual core_RecordArray *GetRecords(const prString &callersSource);

Allows the helpers that know how to make record arrays (www_Search and www_FSI) to do so.

SilverPlatter Proprietary 5-29

WebSPIRS Class Library WebSPIRS Implementor’s Guide

GetDatabase

virtual core_Database *GetDatabase();
Allows helpers that know how to open databases (www_Database) to do so.

Reset

virtual void Reset();
Cleans things up for a subsequent request.

GetHiddenVariables

const prString & GetHidden Variables(const prStringArray & VariablesFormSets);

Gets <input type="hidden” name="variable’”> strings required to preserve this one’s context.

LoginRequired

boolean LoginRequired(const char *callersTag);
Finds out if any of our macros require a true ERL login.

GetMacroCount

uint GetMacroCount() const

Allows external classes to get the helper’s macros for purposes of producing a nicely HTML-formatted list
of macros.

GetMacro

const www_Macro *GetMacro(uint which) const
Provides a set of macros this helper is prepared to support.

GetRequest
www_Request *GetRequest()

Provides access to the request.

GetExpansionString
prString & GetExpansionString()

Returns the work string to use in the expansion.

5-30 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

InterpretArguments
gift cgi_Config *InterpretArguments(const char *callersMacroArguments);

Interprets the keys from a macro.

GetDescription
const prString & GetDescription() const;

Gets a description of the macros contained by the helper. This method is no longer used. It was included
when the intention was to have the macros be self-documenting.

SetDescription

www_HTML_Helper &SetDescription(const prString &callersDescription);
This method sets a description of the macros. It is also not used.

Utility Methods for Generating HTML

The following are utility methods of class www_HTML_Helper for generating HTML:

MakeOptionHTML

prString MakeOptionHTML(const char *callersValueArg , const char *callersText, const prString
&callers Selections);

This method makes a <OPTION value="callersValueArg”>callersText</OPTION> entry.
It will insert the SELECTED attribute if callersValueArg is a comma-delimited string found in
callersSelections.

prString MakeOptionHTML(const char *callersValueArg , const char *callersText, boolean
callersSelection = ¢FALSE);

This methods makes a <OPTION value="callersValueArg”>callersText</OPTION> entry.
It will insert the SELECTED attribute if callersSelection is cTRUE.

MakeCheckboxHTML

prString MakeCheckboxHTML(const char *callersVariableName , const char *callersValue, const char
*callersText, const prString & callersSelections);

This method makes a checkbox: <INPUT TYPE="CHECKBOX” NAME="callersVariableName”
VALUE="callersValue”>callersText</INPUT>. The checkbox is CHECKED if the value
matches one of the comma-delimited values in callersSelections.

prString MakeCheckboxHTML(const char *callersVariableName , const char *callersValue, const char
*callersText, boolean callersChecked = ¢cFALSE);

This method makes a checkbox: <INPUT TYPE="CHECKBOX” NAME="callersVariableName”
VALUE="callersvValue”>callersText</INPUT>. The checkbox is CHECKED if the value of
callersChecked = cTRUE.

SilverPlatter Proprietary 5-31

WebSPIRS Class Library WebSPIRS Implementor’s Guide

MakeHyperLink

prString MakeHyperLink(const prString &callersPrompt , const prString &callersHREF);
This method makes the prompt markup.

MakeUrl

prString MakeUrl(const prString &callersDestinationForm , const prString &callersDbld =
prNullString, const prString &callerskExtraArguments = prNullString);
This method creates a URL to WebSPIRS aimed at the specific form. This will include certain defined

bits of context:
sp.usernumber.p &sp.dbid.p

Anything else can be added in extra arguments as tag=valuestag=values... The callersDbld
argument is left prNullstring. The sp.dbid.p= will default to the currently open database.

LoadGatewayFile

prString LoadGatewayFile(const prString & callersFilename, prString &callersReturnFileName
prString &callersReturnTemplateArguments);

This method loads a file determined by callersFilename. This may be an entry in the request associative
array, in which case it is expanded. It puts callersFilename in callersReturnFileName and any
arguments in callersReturnTemplateArguments.

Table of Helpers Methods

The following set of methods are needed to construct the table of all helpers. Each implemented
www_HTML_Helper class should implement a hidden static class using the C++ template class
www_HelperConstructor <c/ass>which calls Initialize and AddHelperConstructor in its constructor and
Terminate in its destructor. The www_Request class calls ConstructHelpers once to build the table of the
HTML helpers needed to expand the macros.

Initialize

static void Initialize();
This method prepares the table.

Terminate
static void Terminate();

This method destroys the table. The table is actually only freed when all the helpers have been
terminated.

5-32 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetHelperCount

static uint GetHelperCount();
This method returns a count of the helpers.

AddHelperConstructor

static void AddHelperConstructor(www_HTML _Helper* (*HelperConstructor)(www_Request

*callersRequest));

This method adds this helper’s constructor to the table.

ConstructHelpers

static gift www_HTML_Helper **ConstructHelpers(www_Request *callersRequest);
This request is called once to build a table of helpers.

Protected Methods

The following are protected methods of class www_HTML_Helper:

SetCount
void SetCount(uint callersMacroCount);

Sets a macro count.

SetMacro

void SetMacro(uint which, www_Macro *callersMacro);

Constructs a new macro.

SilverPlatter Proprietary

5-33

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Macro
See Also: File
The www_Macro class connects the outside world (the www_Template class) with the specific macro

expansion routine (if any) for the macro. This linkage happens through a static method in the
www_HTML_Helper derived class. See class www_Database for examples of how this is done.

The purpose of the www_Macro class is to define the aspects of individual macros, which are:

Its name.

A description for use in automatically generating documentation.

Whether the macro is part of the “state”, that is, whether it is a variable and should have an
<input type="hidden” generated for it.

Through the subsequent template class, whether and how the macro may be expanded to HTML.

Public Member Functions

The following are public member functions of class www_Macro:

www_Macro

www_Macro();
A class constructor.

www_Macro(const www_Macro &firom);

A copy constructor.

~www_Macro

virtual ~www_Macro();
The class destructor.

operator=

const www_Macro &operator = (const www_Macro &from);
The assignment operator.

GetName

const prString & GetName() const;
Returns the name of the macro; matched against the contents of [SP_ MACRO] ... [/SP_MACRO].

SetName

www_Macro &SetName(const prString &callersDescription);

Sets the name of the macro. For example, it could set the name of the macro by using
“sp.record.fieldtext” callersName parameter.

5-34 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

SetDescription

www_Macro &SetDescription(const prString &callersDescription);
Sets the macro description.

GetDescription

const prString & GetDescription() const;

Gets the macro description.

IsContextVariable

boolean IsContextVariable() const;
The variable must be preserved if it has been assigned a value and there are no HTML input/selects for it.

AlwaysGenerateHidden
boolean AlwaysGenerateHidden() const;

This returns ¢TRUE if hidden inputs should be generated for those portions of the “. pp” type variable’s
value that were not supplied by <INPUT> statements in the template.

LoginRequired

boolean LoginRequired() const;
Is a real login required to use this macro?

SetLoginRequired
www_Macro &SetLoginRequired(boolean callersloginRequired);

Returns cTRUE if the user must be logged into ERL before the macro can run.

ExpansionMethod

const prString & (*ExpansionMethod)(const char *callersMacro, www_HTML_Helper *callersHelper);

This method points to a www_HTML_Helper method which does the work of expanding the macro:

GetExpansionMethod
ExpansionMethod GetExpansionMethod() const

Gets the expansion method.

SetExpansionMethod
www_Macro &SetExpansionMethod(ExpansionMethod callersExpansionMethod);

Sets the expansion method.

SilverPlatter Proprietary 5-35

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_MacroCaller

See Also: Files and wwwmcall.cpp
The www_MacroCaller class connects the C++ classes to | www_HTML_Helper |
macros implemented in C. These macros are defined in
WWwemero. h. www_MacroCaller |

Public Member Functions

The following are public member functions of class www_MacroCaller:

www_MacroCaller

www_MacroCaller(www_Request *callersRequest);

The class constructor.

~www_MacroCaller

virtual ~www_MacroCaller();
The class destructor.

Lookup
virtual const prString &Lookup(const char *%ey);

Expands key into the requisite HTML; each helper need only implement those keys it knows about.

5-36 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class www_Record

See Also: Files wwwrecrd. hpp and wwwrecrd. cpp

The www_Record class provides methods for inserting record text. | www_HTML,_Helper |
Its purpose is to fulfill record extraction type macros using a = =
core_RecordArray supplied by one of the other helpers. www_Record |

Public Member Functions

The following are pubic member functions of class www_Record:

www_Record

www_Record(www_Request *callersRequest);

The class constructor.

~www_Record

virtual ~www_Record();

The class destructor.

Reset
void Reset();

Freezes any memory being used by the class.

Record Extraction Methods

The following are the internal record extraction methods of class www_Record:

GetRecordCounts

const prString & GetRecordCounts(const char *callersiacro = 0);

Returns the count of the records.

GetRecordText

const prString & GetRecordText(const char *callersMacro = 0);

Returns the text of the record.

GetRecordsExtracted

const prString & GetRecordsExtracted(const char *callersMacro = 0);

Gets the records that were extracted.

SilverPlatter Proprietary 5-37

WebSPIRS Class Library WebSPIRS Implementor’s Guide

GetRecordNumber

const prString & GetRecordNumber(const char *callersMacro = 0);

Returns the record number.

GetHowMany
const prString & GetHowMany(const char *callersMacro = 0);

Returns the number of displayed records.

GetTableOfContents

const prString &GetTableOfContents(const char *callersMacro = 0);

This method uses the sp. record. toc macro to get the table of contents.

GetRecordFieldText

const prString & GetRecordFieldText(const char *callersMacro =0);

This method uses the sp. record. fieldtext macro which displays text for a range of fields.

GetRecords

core_RecordArray *GetRecords(const prString &callersSource =0);

This method is used for following a hotlink.

SortRecords

core_RecordArray *SortRecords(core_RecordArray *callersRecords);

If the value of the sp. record. sortrecords.p macro is “Yes,” this method sorts the current set of
records.

PreprocessRequest

virtual void PreprocessRequest(core_Config & femplateArguments);

This method handles the sp. record. action macro and is called before form expansion takes place.

RecordInitialize

static const prString &RecordInitialize(const char *callersMacro, www_HTML_Helper *callersThis);

Calculates all the parameter values such as the number of records to show, the first record, and so forth.

5-38 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetCurrentRecordValue

static const prString &GetCurrentRecordValue(const char *callersMacro, www_HTML_Helper
*callersThis);

This method is connected to the sp. currentrecord. field macro. It gets the text for the current
record, as defined by the variable, sp.currentrecord. The extraction is defined by the argument
FIELDS. The text is converted from DXP to HTML.

DoURL

static const prString &DoURL(const char *callersiMacro, www_HTML_Helper *callersThis);

This method is connected to the macro variable, sp.url.p. It handles the expansion of the contents
of that variable. The contents are defined in the CORE wrapper header file, crspurl . hpp. This
routine is intended to serve when WebSPIRS is being used without a specified template, for example:

.\webspirs.bat?sp.usernumber=1, cmd="yes”, sp.url.p=I (RING)F (*BOS=#1)
would deliver a TIFF file from a fictitious RING document database. The expansion will take one of
the following paths:

o Ifthe URL specifies an external file; for example, a GIF file, the contents of the file are read and
delivered with the appropriate content type as defined by the database information.

e Ifthe URL specifies a field of DXP text or a DXP binary hotlink, then the text/hotlink is
extracted and the content type is defined by the database information.

GetCurrentRecordText

static const prString &GetCurrentRecordText(const char *callersMacro, www_HTML_Helper
*callersThis);

This method uses the sp. currentrecord. text macro which converts the text in a specified field to
HTML.

GetCurrentPlainText

static const prString &GetCurrentPlainText(const char *callersMacro, www_HTML_Helper
*callersThis);

This method formats the current record based on WebSPIRS default HTML markup, which is a
<DL><DT><DD>..</DL> type list.

GetCurrentDBID
static const prString &GetCurrentDBID(const char *callersMacro, www_HTML_Helper *callersThis);

This method provides the database ID of the current record (sp.currentrecord).

SilverPlatter Proprietary 5-39

WebSPIRS Class Library WebSPIRS Implementor’s Guide

GetCurrentDBName

static const prString &GetCurrentDBName(const char *callersMacro, www_HTML_Helper
*callersThis);

This method provides the database name of the current record (sp.currentrecord).

GetCurrentRecordURL

static const prString &GetCurrentRecordURL(const char *callersMacro, www_HTML_Helper
*callersThis);

This method builds a URL to the current record. This is used in the usage-based pricing (UBP)
WebSPIRS.

GetAbstractCostPerRecord

static const prString &GetAbstractCostPerRecord(const char *callersiMacro, www_HTML_Helper
*callersThis);

This method gets the cost per record for the database from which the current record was retrieved. Used
by UBP WebSPIRS.

MakeSPUrl
static const prString &MakeSPUrl(const char *callersMacro, www_HTML_Helper *callersThis);

This method generates the sp . url . p portion of a WebSPIRS hotlink.

BetweenTOC
static const prString &BetweenTOC(const char *callersiMacro, www_HTML_Helper *callersThis);

This method generates the between record (“inter record”) table of contents.

GetRecordField
static const prString &GetRecordField(const char *callersiMacro, www_HTML_Helper *callersThis);

This method gets a field’s text and is used to display the text for full content.

GetLastURL
const prString & GetLastURL();

This method returns the last sp.url.p expanded by the DoURL method.

5-40 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class www_Request
See Also: Files request.hpp and request.cpp

The www_Request class handles the details of interpreting a HTTP cgi_Config |
request. The various other classes all get a pointer to it and use it to get —
|—| www_Request |

the values of the various macros. This is done using the core_Config
API (see the SilverPlatter CORE Wrapper Reference Manual or the
config.hpp header file).

This class offers GetDatabase() to specific methods, which returns a pointer to the core_Database object
(see the SilverPlatter CORE Wrapper Reference Manual or the crvdb . hpp header file. This pointer is
invaluable in database-specific processing,.

The www_Request class makes sure the user is properly logged into the ERL server(s). If not, it generates a
special form, Login.htm, using the www_Template class and sends this back as the filled in form. This
will prompt the user to supply a valid ERL username and password.

The www_Request class uses the following macros:
e sp.username and sp.password, which are supplied to the ERL connection class,
core_ ERLConnection.

e sp.nextform, which determines the template form to be loaded. If this macro is absent, the request
goes into command mode (for use by Perl scripts); otherwise, the request goes to the www_Template
class as described above.

Public Member Functions

The following are the public member functions of class www_Request:

www_Request

www_Request();
A class constructor.

www_Request(const www_Request &from);

A copy constructor.

~www_Request
virtual ~www_Request()

The class destructor.

operator=

const www_Request &operator= (const www_Request &from);

The assignment operator.

SilverPlatter Proprietary 5-41

WebSPIRS Class Library WebSPIRS Implementor’s Guide

SetRequest
void SetRequest(const char *buffer);

Contents of buffer will get unpacked, so it gets modified.

Reset

void Reset();

Cleans things up after a request has been processed.

IsTemplateDriven

boolean IsTemplateDriven();

If no template is to be expected, you are being called (via Perl for example).

GenerateForm

const prString & GenerateForm();

Returns the filled out HTML form.

DoCommands

const prString & DoCommands();

Returns text generated by the tags, that is, no forms.

GetHiddenVariables
prString & GetHiddenVariables(prStringArray & VariablesFormSets);

Gets <input type="hidden” name="variable’”> strings required to preserve this one’s context.

RunMacro

const prString & RunMacro(const prString &theMacro);

This method is used to expand a macro outside of the context of a template. This happens in the
following circumstances:

¢ When WebSPIRS is processing a URL that does not specify a template (delivering a non-HTML
hotlink primarily).

o When WebSPIRS encounters a SP macro in database text. This happens when brave souls put SP
macros in the library holdings message.

¢ When WebSPIRS is expanding the *{ * syntax used to build search terms.

5-42 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetHelperCount
uint GetHelperCount();

Returns the number of helpers in the request.

GetHelper

www_HTML_Helper *GetHelper(uint which);

Gets a pointer to a helper.

DblRefresh
boolean DblRefresh();

This method checks to see if the database list needs refreshing prior to further processing, particularly
opening a database. This list will need refreshing if the user name, password, or IP address has changed.

GetDatabase

core_Database *GetDatabase();

Gets a pointer to the database being used by the request.

GetRecords

core_Search *GetRecords(const prString & callersHelperName =prNullString);

Gets a pointer to the records to be displayed by the request.

ConvertConcatSymbol

const prString &ConvertConcatSymbol(const char *callersValue, char callersConcatSymbol =,%);
This method is no longer used.

GetErrorMessage

const prString &GetErrorMessage()

Gets the error message that describes any problems encountered in processing the macro.

SilverPlatter Proprietary 5-43

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Search

See Also: wwwsrch.hpp and wwwsrch. cpp

The www_Search provides methods which do the following; | wew_HTML Helper |

Hang onto the search.for the length of the request. |_| www Search |
Interpret the automatic subject lookup (ASL) macro. =
Get the parsed search text or reports an error.

Do the thesaurus tasks.

This class is for SP internal use only.

Public Member Functions

The following are public member functions of class www_Search:

www_Search

www_Search(www_Request *callersRequest);

The class constructor.

~www_Search

virtual ~www_Search();

The class destructor.

Reset
void Reset();

Freezes any memory being used by the class.

GetRecords

core_RecordArray *GetRecords(const prString & callersSource);

This method builds a search based on the contents of the sp. search.value.p macro and returns a
pointer to the records matched by the search.

GetASLList
static const prString &GetASLList(const char *callershMacro, www_HTML_Helper *callersThis);

This method handles the sp.asl.1ist macro.

5-44 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetSearchText
static const prString & GetSearchText(const char *callersMacro, www_HTML_Helper *callersThis);

This method handles the sp. record. search macro.

GetTermDefinition

static const prString &GetTermDefinition(const char *callersMacro, www_HTML_Helper
*callersThis);

This method handles the sp. term.definition macro.

PrepareTerm

static const prString &PrepareTerm(const char *callersMacro, www_HTML_Helper *callersThis);

This method handles the sp.term.prepare detail macro.

DoPermutedList

static const prString &DoPermutedList(const char *callersiMacro, www_HTML_Helper *callersThis);

This method handles the sp.permuted 1ist macro.

BuildSearchHistory

static const prString &BuildSearchHistory(const char *callersMacro, www_HTML_Helper
*callersThis);

This method handles the sp. searchhistory.build macro. It takes the current search and adds it
to the search history.

SilverPlatter Proprietary 5-45

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Server

See Also: File wwwservr.hpp

The class www_Server gets the requests from the common gateway interface (CGI) server, parses the
requests, and acts on them. Input requests are handled by the hypertext transport protocol (HTTP) and the
output is a hypertext markup language (HTML) form.

Public Member Functions

Following are the public member functions of class www_Server:

www_Server

www_Server();

The class constructor.

~www_Server

virtual ~www_Server();

The class destructor.

Go
virtual void Go();

The function consists of the following loop:

while (GetRequest))

{
GenerateForm(); // Every request is guaranteed to produce a form of some kind.
WriteForm({);

}

Default requests come from the . cfg file tag, Www.REQUEST FILE, default = wwwservr.req. This
file should have one line in tag=, tag=.. format. GetRequest reads the file whenever the date changes.
You can terminate the business by deleting the file. Input requests will be echoed to sysout and a debug
file if the . cfg file tag www.ECHO REQUESTS is set. Similarly, output forms will be echoed if
WWW.ECHO FORMS is set.

SetEchoRequestsFlag
www_Server &SetEchoRequestsFlag(boolean theFchoFlag);

This function sets the flag that echoes requests. Useful for debugging.

GetEchoRequestsFlag
boolean GetEchoRequestsFlag() const;

This function gets the request set by SetEchoRequestsFlag.

5-46 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

SetEchoFormsFlag
www_Server &SetEchoFormsFlag(boolean theFchoFlag);

This function sets the flag the echoes forms.

GetEchoFormsFlag
boolean GetEchoFormsFlag() const;

This function gets the request set by SetEchoFormsFlag.

SetPipeName

www_Server &SetPipeName(const char *callersPipeName);

This function sets the name of the pipe.

SetFileNames

www_Server &SetFileNames(const char *callersinputFileName, const char *callersOutputFileName);

This function sets the names of files.

SilverPlatter Proprietary 5-47

WebSPIRS Class Library WebSPIRS Implementor’s Guide

Class www_Template
See Also; Files template.hpp and template.cpp

The www_Template class handles the details of filling in a | www_HTML,_Helper |
template HTML form based on information supplied by the = —
www_Request class. It reads the template name supplied in its www_Template |

constructor, and it does any special processing specified in the
various “action” macros such as sp.record.action.

It uses class prFormat to do the form fill in processing (see the SilverPlatter CORE Wrapper Reference
Manual or the prformat.hpp header file) .

Basically, this class copies the template until it finds a [SP_MACRO] ... [/SP_MACRO] and then calls a
Lookup function supplied by the template class, www_TemplateExpander:Lookup. This method supplies
the text to be inserted in the macro’s stead.

Finally, the template class determines what hidden variables are to be inserted into the finished form. It does
this by building the set of variables found in <input>, <select>, and [SP_MACRO]s. This is the set of
variables that the form itself will produce, with or without user help. It then looks at the variables contained
in the request, class www_Request. Any of these whose name ends in a . p” (for persistent) suffix and that
are not in the first set of variables will have <input type="hidden”...> generated for them.

Rules Used in www_TemplateExpander:Lookup to Turn Macros into HTML

e The macro is passed the various www_HTML_Helper lookup routines. These expand the macro if they
know how. For example, the macro sp.database.list isexpanded by the www_Database class in
the method GetDatabaseList().

e If no expansion took place, the macro’s current value in the request is inserted into the form.

Public Member Functions

The following are public member functions of class www_Template:

www_Template

www_Template(www_Request *theRequest);
www_Template(www_Request *theRequest, const prString &fileName);

The class constructors.

~www_Template

virtual ~www_Template();

The class destructor.

SetFormContents

void SetFormContents(const char *callersTemplate);

Allows the template to expand an “in memory” template rather than load it up from a file.

5-48 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

GetForm

const prString & GetForm();

Fills out the HTML form.

| www_HTML _Helper |

|_| www_User |

The www_User class handles CGI and server specific macros such as sp.username, sp.password, and
sp.include. See Chapter 4 for definitions of these macros.

Class www_User

See Also: wwwuser.hpp

Public Member Functions

Following are the public member functions for class www_User:

www_User

www_User(www_Request *callersRequest);

The class constructor.

~www_User

virtual ~www_User();

The class destructor.

GetMacroList

const prString & GetMacroList(const char *callersMacro = 0);

This function returns a list of all macros.

IncludeTemplate

const prString &IncludeTemplate(const char *callersMacro = 0);

This function provides the sp . include macro which includes a file in a template.

AssignValue

const prString & AssignValue(const char *callersMacro);

This function provides the sp . assign macro which assigns a value to a variable.

SilverPlatter Proprietary 5-49

WebSPIRS Class Library WebSPIRS Implementor’s Guide

ForEach

const prString & ForEach(const char *callersMacro);

This function provides the macro which repeatedly expands the macros contained in a
specified file.

IfCond

const prString &IfCond(const char *callersMacro);

This function provides the sp.if macro which creates a conditional “if-else” programming statement.

GenerateURL

const prString & GenerateURL(const char *callersMacro);

This function provides the sp.generate url macro which generates a URL from one template to
another within WebSPIRS.

GetValue

prString GetValue(const char *callersSyntax, const char **callerskEndTag = 0);

This function provides the sp . getvalue macro which gets the value of a variable.

5-50 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide WebSPIRS Class Library

Class www_Wild

See Also: File wwwwild. hpp

The class www_Wild expands field table type requests. It

was created for the Worldwide Integrated Library of | www_HTML_Helper |
Databases (WILD) Thing project. One of the goals of that
project was to support various standard generalized markup www_Wild |

language (SGML) document type definitions (DTD).

Public Member Functions

Following are the public member functions of class www_Wild:

www_Wild

www_Wild(www_Request *callersRequest);

The class constructor.

~www_Wild
virtual ~www_Wild();

The class destructor.

BuildSGMLToCURL

static const prString &BuildSGMLToCURL(const char *callersMacro, www_HTML_Helper
*callersThis);

This method builds a link to an SGML table of contents database.

MakeLink
static const prString &MakeLink(const char *callersMacro, www_HTML_Helper *callersThis);

This method makes a link so that the SGML viewer (Panorama) can go back and get the DTD.

GetNotation

static const prString &GetNotation(const char *callersMacro, www_HTML_Helper *callersThis);

For some links there are specific notations, such as “this is a .GIF” and this method gets the notation.

GetCitation
static const prString &GetCitation(const char *callersMacro, www_HTML_Helper *callersThis);

This method returns the SGML-specific citation of the record.

SilverPlatter Proprietary

5-51

WebSPIRS Class Library WebSPIRS Implementor’s Guide

52 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Chapter 6 - Frequently Asked Questions

This chapter contains frequently asked questions about WebSPIRS and the answers to those questions.

Q:
What is the WebSPIRS software?
A:

WebSPIRS provides a usable, simple interface that also handles complex Boolean searches. Without loading
any additional software, anyone with a forms-capable browser and access to the worldwide web can use
WebSPIRS to search SilverPlatter databases loaded on an ERL server.

Forms created in HTML retrieve the ERL data using WebSPIRS, which was designed using a template
strategy. You can use the templates as models to create your own interface forms, or you can make a copy of a
template and modify it to fit your needs.

Q:

What are the minimum requirements for WebSPIRS?

A:

The minimum requirements for running WebSPIRS on the Linux, Solaris, and Windows NT platforms are
described in Chapter 2, Installing and Configuring WebSPIRS.

Q:
Can WebSPIRS be run on the same server as the ERL server software?
A:

Yes, WebSPIRS and ERL can be run on the same system when they are both available on the same platform.
Be sure that the minimum requirements are met for both WebSPIRS and ERL on the platform you choose.

Q:
Can the WebSPIRS interface be changed?
A:

Yes, WebSPIRS is delivered to an ERL site with a default interface provided. System administrators with
knowledge of HTML can very easily customize the look of the interface. The WebSPIRS HTML interface
documents are located in the directory within the WebSPIRS directory. Detailed instructions
can be found in Chapter 3, Tutorial for Customizing Templates.

SilverPlatter Proprietary 6-1

Frequently Asked Questions WebSPIRS Implementor’s Guide

Q:
How can I configure WebSPIRS for automatic login?
A:

Automatic login for WebSPIRS requires a change to a configuration file. Change to the
/usr/local/etc/webspirs/bin directory on the web server. Use a text editor to edit the
webspirs.ctfg file and add these lines:

[SP]

username=<your ERL username>

password=<your ERL password>

For example:

[SP]
username=guest
password=guest

It is important to note that these three lines must be at the very beginning of the webspirs. cfg file. If they
are not the first three lines in the file, then automatic login will not work. Additional details about
configuring WebSPIRS can be found in Chapter 2, Installing and Configuring WebSPIRS.

Q:
Where can I get the WebSPIRS client software?
A:

The WebSPIRS ERL client software for the Linux platform is available on SilverPlatter's Software Resource
CD. In addition, the software packages for both the Linux and Solaris platforms are located on SilverPlatter's
Anonymous FTP server. The following instruction will help you ftp it:

1. Open an FTP connection to SilverPlatter's Anonymous FTP server (ftp.silverplatter.com
or

192.80.71.12). Login as anonymous or ftp and use your Internet e-mail address as the
password.

2. Once you connect to the FTP server, change to the appropriate WebSPIRS client directory:

/software/erl-clients/web/linux (for the Linux platform)
/software/erl-clients/web/solaris (for the Solaris platform)

3. Set file transfer type to binary.
4. Copy the file from this subdirectory on the FTP server to your server's hard disk.
5. Exit out of FTP.

To install the software, see Chapter 2, Installing and Configuring WebSPIRS, or the instructions in the
install. txt file.

6-2 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Frequently Asked Questions

Q:
What do the cgibaby, cgichild, and cgiadult executables do anyway?
A:

e cgibaby
o cgichild is the main WebSPIRS program that dispatches requests and runs all the time.
e cgiadult is a searching connection; you may see several of these.

When a user makes a request, the HTTP server launches cgibaby, which sends the request to cgichild.
cgichild creates or uses one of the cgiadult connections to process the request. The request results are then
sent from the cgiadult directly back to the cgibaby, and then to the HTTP server. A more detailed explanation
of these programs can be found in Chapter 1, Overview.

Q:
Can WebSPIRS be used to access databases on a local arca network?
A:

No, WebSPIRS has been developed as an ERL client. Because of this, it can can only be used to access
databases loaded on an ERL server. It cannot access databases located on non-ERL networks. Consult
SilverPlatter for more information.

Q:
How do I eliminate a "Gateway not operating" message with a new WebSPIRS installation?
A:

This message means the gateway is not running. Run the following command to start it again:

Q:
What does the message "Gateway not found" mean?
A:

This message means that cgibaby could not find cgichild. The cgichild may not be running, or the
request name setting in the webspirs.cfg file and the cgibaby. cfg file do not match. Check the
setting in those files. For information about the cgibaby and cgichild processes see Chapter 1, Overview.

Q:
I stopped the cgichild process and then tried to restart it again but could not. What's wrong?
A:

WebSPIRS communicates using TCP/IP connections. On some platforms shutting down cgichild leaves the
pipes around for awhile, and they must time out. Wait a few minutes and try again.

Q:
Will WebSPIRS work with Netscape's web server software?
A:

Yes, however, the web server is configured through a menu system. Use the menu to set the HTTPD's user.

SilverPlatter Proprietary 6-3

Frequently Asked Questions WebSPIRS Implementor’s Guide

Q:
In what order does WebSPIRS list databases in the database selection screen?
A:

Databases are sorted on the ERL server not by WebSPIRS. The databases are listed in the order set by an ERL
administrator through the volsort script.

Q:
Does WebSPIRS work with full text databases?
A:

Yes. AlthoughWebSPIRS is unable to provide the user with a database-wide Table of Contents, the software
does provide a Table of Contents for each record and is capable of supporting full-text databases.

Q:
What is the difference between the webspirs. cgi and webspird.cgi scripts?
A:

The webspird. cgi script is used to start and stop the WebSPIRS software. In addition, it provides status
information on the program. To start WebSPIRS, change to the /usr/local/etc/webspirs/bin
directory and enter:

./webspird.cgi start

To stop WebSPIRS, enter:
./webspird.cgi stop

To get information on the program's status, enter:
./webspird.cgi status

The webspirs. cgi script provides each WebSPIRS user with access to the ERL server. It is the script that
implements the search software. See "The .htaccess File" section in Chapter 2, Installing and Configuring
WebSPIRS.

Q:
How can the WebSPIRS software be configured to access a specific ERL server?
A:

On the WebSPIRS server, change to the /usr/local/etc/webspirs/bin directory. Using a text
editor such as vi, edit the erlclnt.cfg file and set the server addrl parameter to the correct ERL
server address. For example:

server addrl = /2/erl2.silverplatter.com/416

Please note that there should only be one occurrence of the server addrl parameter within this file.

6-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Q:
How do users mark records in WebSPIRS?

A:

A checkbox appears before each record in the user's search results. The user can check records of interest and
then redisplay them. The user can also print the records or save them to a file. The on-line help provides
additional instructions for marking records.

Q:
Why does the webspirs.pid file have to be deleted after the web server is rebooted?
A:

The web server should not be rebooted while WebSPIRS is running. When it is, the webspirs.pid fileis
not deleted and restarting the software results in an error message. To prevent this from happening, stop the
WebSPIRS software before rebooting the server. Change to the /usr/local/etc/webspirs/bin
directory and enter:

./webspirs.cgi stop

Q:
How can unauthorized users be prevented from accessing WebSPIRS?
A:

The WebSPIRS 2.2 software, when used in conjunction with the ERL 2.1 server, does include the capability
to prevent unauthorized users from accessing its web pages. Most web server software does include this type
of capability. To prevent access, you can create a . htaccess file, as described in Chapter 2, Installing and
Configuring WebSPIRS. In addition, the ERL server software provides security through IP address checking.
Two files control IP address checking for TCP/IP clients. They are ipincl (IP Include) and ipexcl (IP
Exclude). Please see the ERL Administrator's Manual

Q:
Can I search WebSPIRS directly with a URL?
A:

Yes, you can link to WebSPIRS and save time by searching directly with a URL. Here are two examples of
how to do this.

The first example opens a specific database, skips the Database selection page, and goes to the Search page:

http://webspirs.silverplatter.com/cgi-bin/webspirs.cgi?sp.dbid.p=AESB
&sp.nextform=search.htmé&sp.search.terml.p=cash

The second example opens the MEDLINE databases it finds, skips the Database selection page, and goes to
the Search page:

http://webspirs.silverplatter.com/cgi-bin/webspirs.cgi?sp.setid.p=ML&
sp.nextform=search.htmé&sp.search.terml.p=medication

Note that what follows sp.search. terml.p should be URL encoded. Blank spaces are particularly
troublesome; for example, "jones in au" becomes "jones%20in%20au". See the URLEncodeString function
of class cgi_Config in Chapter 5, WebSPIRS Class Library.

SilverPlatter Proprietary 5

WebSPIRS Implementor’s Guide Glossary

Glossary

API

Application Program Interface. A set of services which can be called by an application program, usually with
a publicly specified interface.

CGI script

Common Gateway Interface script. A platform-specific script which allows Web servers to interact with
external processes. CGI programs can be written in a variety of languages which include C and perl.

client

A platform-specific program responsible for interpreting the end user's queries and displaying the results.
Sometimes referred to as the "user interface" or the "client application.”

client/server architecture

In a client/server architecture, the client functions for query formulation and display, and the server functions
for query evaluation and display. The messaging system ties the client and server together.

constructor

C++ member function with the same name as the class. It constructs objects of the class type
and is invoked when the associated type is used in a definition.

CORE

Content Operative Retrieval Engine. The CORE software is the essence of SilverPlatter's information search
and retrieval technology. It is implemented using object-oriented techniques in the C programming language.
CORE Wrapper

C++ classes that "wrap" and are dependent upon the CORE library, which was written in ANSI C.

destructor

C++ member function whose name is the class name preceded by a character. It destroys values of the

class type.

SilverPlatter Proprietary G-7-1

Glossary WebSPIRS Implementor’s Guide

DTD

Document Type Definition. The DTD is written using SGML and describes the sort of document to be used,
for example, a manual or an article for a newspaper. The DTD contains declarations, each of which defines a
construct to be used in a style of document. HTML is an SGML DTD.

DXP

Data eXchange Protocol. SilverPlatter's interface-independent retrieval protocol.

ERL

Electronic Reference Library. A multi-user application server implementation of SilverPlatter's CORE
technology. The ERL retrieval engine runs on UNIX and can be accessed by clients over TCP/IP.
explode

A Boolean operation that calculates the OR (union) of a given word and all its narrower terms. If the end
user chooses to explode a term, the selected term and all of its narrower terms are returned.

find parser

A CORE object that takes search syntax entered by the end user and converts it to search-engine-friendly
syntax. It is an implementation of the UI parser object.

form

A form is a document having blank edit fields. The fields are filled in by and returned to the user. Some
forms are simple, such as a query request form, and others are complex, such as an online registration form.
FTP

File Transfer Protocol. An industry-standard protocol used to transfer files to and from a remote computer.

HTML

HyperText Markup Language. A HTML document is an ASCII text file that contains embedded HTML tags.
The tags are used to identify the structure of the document and to identify hyperlinks and their associated
URLs.

HTML templates

Context-specific elements of the user's view of an ERL database, encoded with a macro language understood

by WebSPIRS, and used as a starting point in the construction of the final HTML forms sent to the Web
client.

G-7-2 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Glossary

HTTP

HyperText Transport Protocol.

HTTPD

HyperText Transport Protocol Daemon.

Internet

A world-wide computer network tying together educational institutions, businesses, governments, and
individuals.

IPX

Internetworked Packet eXchange. Novell's protocol used by NetWare LANs. Layers of software above IPX
can use IPX to deliver messages for a variety of LAN applications such as E-mail, databases, file services, and
LAN printing.

Local CORE

CORE services implemented to access databases using direct reading of the local native file system.

macro
The term macro implies substitution. The SilverPlatter macros used in WebSPIRS are prewritten functions
that provide for necessary chores, such as logging in and searching and retrieving information.

MacTCP

The software driver for the Macintosh operating system that implements the TCP/IP protocols. These
protocols provide transmission services that are used by third-party applications such as electronic mail,
remote login, file transfer, and database access.

memory manager

The API that provides services for managing memory while using the CORE. The memory manager
manages two types of memory--addressable and virtual. It is sometimes abbreviated, "MM."

NCSA

National Center for Supercomputing Applications. Telnet software that implements TCP/IP protocols.

SilverPlatter Proprietary G-7-3

Glossary WebSPIRS Implementor’s Guide

NetWare

NetWare is a family of local area network (LAN) operating systems from Novell, Inc., that run on IBM-
compatible PCs, Macintosh computers, and Digital's VAX series.

Network CORE

CORE services implemented to access databases using a client/server protocol (DXP) interaction with a DXP-
compatible application server.

NFS

Network File System. A network protocol developed and distributed by Sun Microsystems. NFS allows data
to be shared among many users in a network, regardless of processor type, operating system, network
architecture, or protocol.

permuted list

An ordered list of all the words that appear in thesaurus terms. Under each word is a list of the term(s) in
which it appears.

porting

Converting software to run in a different computer environment.

protocol

A specific set of conventions for communications among computers.

SGML

Standard Generalized Markup Language. A standard for describing markup languages.

SPIRS

SilverPlatter Information Retrieval System. The following SPIRS applications have been created by
SilverPlatter using the CORE:

MacSPIRS is SP's retrieval system for the Macintosh

PC-SPIRS is SP's first generation retrieval system for the IBM PC.
UNIX-SPIRS is SP's retrieval system for the UNIX environment.
WebSPIRS is SP's retrieval system for the Internet environment.

WinSPIRS is SP's retrieval system for the Microsoft Windows environment.

G-7-4 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide Glossary

syntax

A set of rules governing the structure of and relationship between symbols, words, and phrases in a language
statement.

TCP/IP

Transmission Control Protocol/Internet Protocol. A communications protocol suite designed to interconnect
a wide variety of computer equipment. TCP provides for the reliable transfer of data, while IP transmits the
data through the network in the form of datagrams.

template

A HTML-formatted document that provides an outline of prepared HTML tags. Using a template saves the
time spent inserting basic HTML tags and assures the correct order of the tags. Many WebSPIRS templates
are encoded with a macro language.

URL

Uniform Resource Locator. Web browsers, such as Mosaic and Netscape, follow URLSs to their source and
display them.

WILD

Worldwide Integrated Library of Databases. The WILD Thing project supported different SGML DTDs.

WWW

World Wide Web, or Web for short. A method of sharing information on the Internet. The information is
modeled as objects. An object can point to any other object on the Internet.

SilverPlatter Proprietary G-7-5

Glossary

WebSPIRS Implementor’s Guide

A

access to WebSPIRS
restricting with the .htaccess file, 2-8
action.htm template, 3-4, 3-11
AddAlert function
www_Alert class, 5-12
AddArguments function
cgi_Config class, 5-2
AddEnvironment function
cgi_Config class, 5-2
AddExpandTag function
www_Arguments class, 5-13
AddHelperConstructor function
www_HTML_Helper class, 5-33
AddHttpTags function
cgi_Config class, 5-2
AddTags function
cgi_Config class, 5-3
AlwaysGenerateHidden function
www_Macro class, 5-35
AppendCfg function
cgi_Config class, 5-3
Assert function
www_Environment class, 5-18
AssignValue function
www_User class, 5-49

B

BadUser function
www_ERLConnection class, 5-22
BetweenTOC function
www_Record class, 5-40
Blat utility, 2-7
BuildAllFieldSets function
www_Database class, 5-17
building WebSPIRS, 4-25
BuildSGMLToCURL function
www_Wild class, 5-51
bypassing the Login page, 3-4

C

C++ implementation, 4-25
coding macro functions, 4-27

cgi_Config class
~cgi_config destructor, 5-2
AddArguments function, 5-2
AddEnvironment function, 5-2
AddHttpTags function, 5-2
AddTags function, 5-3
AppendCfg function, 5-3
cgi_Config constructors, 5-2
ConvertToHttp function, 5-3
Dump function, 5-3
Mergeltem function, 5-3

operator= function, 5-2
ReadRequest function, 5-3
RestoreCodedCharacters function, 5-4
RoleInDefaults function, 5-3
URLEncodeString function, 5-3
cgiadult process, 1-2
cgibaby process, 1-2
cgichild process, 1-2
changing the number of records displayed, 3-6
changing the template title, 3-6
checkbox.htm template, 3-11
classes, 5-1
cgi_Config, 5-2
dxp_to_html, 5-5
erlAdmin, 5-6
erlAdmin_DBInfo, 5-7
erlAdmin_UserlInfo, 5-8
hierarchical drawing, 5-1
sgml_Field, 5-10
www_Admin, 5-11
www_Alert, 5-12
www_Arguments, 5-13
www_Database, 5-15
www_Environment, 5-18
www_ERLConnection, 5-20
www_Field, 5-24
www_FSL, 5-25
www_Guide, 5-27
www_HTML _Helper, 5-28
www_Macro, 5-34
www_MacroCaller, 5-36
www_Record, 5-37
www_Request, 5-41
www_Search, 5-44
www_Server, 5-46
www_Template, 5-48
www_User, 5-49
www_Wild, 5-51
clrsrch.htm template, 3-11
configuring WebSPIRS
activating mail, 2-6
cgibaby.cfg file, 2-6
changing the socket number, 2-6
creating a mail script, 2-6
creating the .htaccess file, 2-8
erlcint.cfg file, 2-7
mime.types file, 2-8
restricting access, 2-8
setting a debug value, 2-6
setting the connections, 2-6
webspirs.cfg file, 2-6
ConnectionDied function
www_ERLConnection class, 5-23
ConstructHelpers function
www_HTML_Helper class, 5-33
controlling the flow of pages
using a Submit button, 3-8
using a URL, 3-8

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

Convert function
dxp_to_html class, 5-5
ConvertConcatSymbol function
www_Request class, 5-43
ConvertToHttp function
cgi_Config class, 5-3
CopyToVariable function
www_FSI class, 5-26
customizing templates, 3-1
bypassing the Login page, 3-4

changing the background graphic, 3-7
changing the graphical interface, 3-6

changing the logo graphic, 3-7

changing the records display default number, 3-6

changing the template title, 3-6
changing the toolbar, 3-6

controlling the flow of pages, 3-8

creating a table, 3-7
displaying specific fields, 3-5
kinds of customizations, 3-4
preselecting databases, 3-5

D

database.htm template, 3-9
DatabaseForEach function
www_Database class, 5-16
dbitem.htm template, 3-11
dblitmck.htm template, 3-11
DblRefresh function
www_Request class, 5-43
debugging WebSPIRS, 1-3
displaying specific fields, 3-5
DoCommands function
www_Request class, 5-42
DoFSIToc function
www_FSI class, 5-25
DoPermutedList function
www_Search class, 5-45
DoURL function
www_Record class, 5-39
Dump function
cgi_Config class, 5-3
dxp_to_html class
~dxp_to_html destructor, 5-5
Convert function, 5-5
dxp_to_html constructor, 5-5
SetDatabase function, 5-5
SetRequest function, 5-5

SetTranslatefromDos function, 5-5

DXPError function

www_ERLConnection class, 5-23

E

EMWAC server, 2-1
erlAdmin class
~erlAdmin destructor, 5-6
erlAdmin constructor, 5-6

erlAdmin_DBInfo class
erlAdmin_DBInfo constructor, 5-7

erlAdmin_DBInfo destructor, 5-7
GetCostPerAbstract function, 5-7
GetCostPerRecord function, 5-7

SetDatabase function, 5-7
erlAdmin_UserInfo class

~erlAdmin_UserInfo destructor, 5-8
erlAdmin_UserInfo constructor, 5-8

GetMaxCharge function, 5-9

GetNumberCurrentlyLogged function, 5-9

GetTotalCharge function, 5-9
GetTotalLogins function, 5-9
GetUserld function, 5-9
GetUserName function, 5-8
SetServer function, 5-8
SetUserName function, 5-8
EvaluateAlert function
www_Alert class, 5-12
examples
adding a macro using C++, 4-26

implementing a www_HTML_Helper class, 4-26

ExpansionMethod function
www_Macro class, 5-35
exphtml.htm template, 3-11
expmail.htm template, 3-11
expraw.htm template, 3-11
expterm.htm template, 3-11

F

FatalErrorOccurred function

www_ERLConnection class, 5-20

fielditm.htm template, 3-11
fields

changing the default display fields, 3-5

foot.htm template, 3-11
ForEach function
www_User class, 5-50
FORMs in WebSPIRS, 3-4
frequently asked questions

Can [search WebSPIRS directly with a URL?, 6-5
Can the WebSPIRS interface be changed?, 6-1
Can WebSPIRS be run on the same server as the

ERL server?, 6-1

Can WebSPIRS be used to access databases on a

LAN?, 6-3

Does WebSPIRS work with full text databases?,

6-4

How can I configure WebSPIRS for automatic

login?, 6-2

How can the WebSPIRS software be configured to

access a specific ERL server?, 6-4

How can unauthorized users be prevented from

accessing WebSPIRS?, 6-5

How do I eliminate a "Gateway not operating”

message?, 6-3

How do users mark records in WebSPIRS?, 6-5

SilverPlatter Proprietary

Index-7

Index

WebSPIRS Implementor’s Guide

1 stopped the cgichild process and cannot start it
again. What's wrong?, 6-3

In what order does WebSPIRS list databases?, 6-4

What are the minimum requirements for
WebSPIRS?, 6-1

What do the cgibaby, cgichild, and cgiadult
executables do anyway?, 6-3

What does the message "Gateway not found"

mean?, 6-3
What is the difference between the
webspirs.cgi and webspird.cgi

scripts?, 6-4
What is the WebSPIRS software?, 6-1
Where can [get the WebSPIRS client software?,
6-2
Why does the webspirs.pid file have to be
deleted after the web server is rebooted?, 6-5
Will WebSPIRS work with Netscape's web server
software?, 6-3
FSIToSearch function
www_FSI class, 5-25
fip site, 2-1

G

GenerateForm function
www_Request class, 5-42
GenerateURL function
www_User class, 5-50
GetAbstractCostPerRecord function
www_Record class, 5-40
GetASLList function
www_Search class, 5-44
GetCitation function
www_Wild class, 5-51
GetClientAddress function
www_ERLConnection class, 5-21
GetContentField function
sgml_Field class, 5-10
GetContentType function
sgml_Field class, 5-10
GetCostPerAbstract function
erlAdmin_DBInfo class, 5-7
www_Admin class, 5-11
GetCostPerRecord function
erlAdmin_DBInfo class, 5-7
GetCurrentDatabaseList function
www_Environment class, 5-19
GetCurrentDBID function
www_Record class, 5-39
GetCurrentDBName function
www_Record class, 5-40
GetCurrentPlainText function
www_Record class, 5-39
GetCurrentRecordText function
www_Record class, 5-39
GetCurrentRecordURL function
www_Record class, 5-40
GetCurrentRecordValue function

www_Record class, 5-39
GetDatabase function
www_Database class, 5-15
www_HTML_Helper class, 5-30
www_Request class, 5-43
GetDatabaseDescriptions function
www_Database class, 5-16
GetDatabaseList function
www_Environment class, 5-19
GetDatabaseName function
www_Database class, 5-15
GetDatabaseTag function
www_Database class, 5-16
GetDatabaseTitleScreens function
www_Database class, 5-16
GetDatesCovered function
www_Database class, 5-16
GetDescription function
www_HTML_Helper class, 5-31
www_Macro class, 5-35
GetEchoFormsFlag function
www_Server class, 5-47
GetEchoRequestsFlag function
www_Server class, 5-46
GetERLPath function
www_Environment class, 5-19
GetErrorMessage function
www_ERLConnection class, 5-21
www_Request class, 5-43
GetExpansionMethod function
www_Macro class, 5-35
GetExpansionString function
www_HTML_Helper class, 5-30
GetExpiredServer function
www_ERLConnection class, 5-21
GetFieldList function
www_Field class, 5-24
GetFieldListForEach function
www_Field class, 5-24
GetForm function
www_Template class, 5-49
GetFSIList function
www_FSI class, 5-25
GetGuideDBName function
www_Guide class, 5-27
GetHelper function
www_Request class, 5-43
GetHelperCount function
www_HTML_Helper class, 5-33
www_Request class, 5-43
GetHiddenVariables function
www_HTML_Helper class, 5-30
www_Request class, 5-42
GetHowMany function
www_Record class, 5-38
GetKeyFoundFlag function
www_HTML_Helper class, 5-29
GetLastURL function

Index-8 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

www_Record class, 5-40
GetListForEach function
www_Database class, 5-16
GetMacro function
www_HTML_Helper class, 5-30
GetMacroCount function
www_HTML_Helper class, 5-30
GetMacroList function
www_User class, 5-49
GetMaxCharge function
erlAdmin_UserInfo class, 5-9
GetName function
www_HTML_Helper class, 5-28
www_Macro class, 5-34
GetNotation function
www_Wild class, 5-51
GetNumberCurrentlyLogged function
erlAdmin_UserInfo class, 5-9
GetPtr function
www_Environment class, 5-19
GetRecordCounts function
www_Record class, 5-37
GetRecordField function
www_Record class, 5-40
GetRecordFieldText function
www_Record class, 5-38
GetRecordNumber function
www_Record class, 5-38
GetRecords function
www_HTML_Helper class, 5-29
www_Record class, 5-38
www_Request class, 5-43
www_Search class, 5-44
GetRecordsExtracted function
www_Record class, 5-37
GetRecordText function
www_Record class, 5-37
GetRequest function
www_HTML_Helper class, 5-30
GetSearchText function
www_Search class, 5-45
GetSelf function
www_ERLConnection class, 5-22
GetTableOfContents function
www_Record class, 5-38
GetTermDefinition function
www_Search class, 5-45
GetTotalCharge function
erlAdmin_UserInfo class, 5-9
GetTotalLogins function
erlAdmin_UserInfo class, 5-9
GetUserld function
erlAdmin_UserInfo class, 5-9
GetUserName function
erlAdmin_UserInfo class, 5-8
GetValue function
www_User class, 5-50
Go function

www_Server class, 5-46

H

head.htm template, 3-11
hierarchical class drawing, 5-1
hotlink.htm template, 3-9

Idle function
www_Environment class, 5-18
IfCond function
www_User class, 5-50
implementing WebSPIRS
C++ language, 4-25
IncludeTemplate function
www_User class, 5-49
index.htm template, 3-9
indterm.htm template, 3-11
Init function
www_HTML_Helper class, 5-28
Initialize function
www_HTML_Helper class, 5-32
installing WebSPIRS, 2-1
downloading a browser, 2-1
downloading a free server, 2-1
downloading the Apache server, 2-1
downloading the EMWAC server, 2-1
downloading the package file, 2-1
downloading the WebSite server, 2-1
Linux platform, 2-2
preparing to install, 2-1
saving changes before you install, 2-1
Solaris platform, 2-3
Windows NT platform, 2-5
internal processes
cgiadult, 1-2
cgibaby, 1-1
cgichild, 1-2
InterpretArguments function
www_HTML_Helper class, 5-31
IsContextVariable function
www_Macro class, 5-35
IsTemplateDriven function
www_Request class, 5-42

L

Linux platform

installation procedure, 2-2

installing manually, 2-2

installing with pkgtool, 2-2

minimum hardware requirements, 2-2
LoadGatewayFile function

www_HTML_Helper class, 5-32
log files

wwwbaby.req , 1-3

wwwform.log , 1-4

SilverPlatter Proprietary Index-9

Index

WebSPIRS Implementor’s Guide

wwwlast.req , 1-4

webreqg.log , 14

webuser.log . 14
Login function

www_ERLConnection class, 5-22
login.htm template, 3-9
LoginFailed function

www_ERLConnection class, 5-20
LoginRequired function

www_HTML_Helper class, 5-30

www_Macro class, 5-35
logout.htm template, 3-9
Lookup function

www_HTML_Helper class, 5-29

www_MacroCaller class, 5-36

M

macro commands, 4-1
sp.admin.balance ,4-6
sp.admin.total.used ,4-6
sp.asl.list ,4-14
sp.assign ,4-21
sp.avail.dbs.foreach L 47
sp.checked ,4-20
sp.currentrecord.absolute.url
sp.currentrecord.abstract.cost
sp.erl.logout ,4-6

4-9

>

>

sp.erl.message.of.the.day ,4-6

sp.expansionpart ,4-17
sp.field.list ,4-16
sp.foreach ,4-22
sp.fsi.copytovariable ,4-15
sp.fsi.list ,4-15
sp.fsi.tosearch ,4-14
sp.generate_url ,4-23
sp.guide.toc ,4-19
sp.guide.topic ,4-19
sp.if ,4-23
sp.include ., 4-23
sp.isinlist ,4-20
sp.makespurl , 4-10
sp.opened.dbs.foreach L 47
sp.record.counts ,4-10
sp.record.initialize ,4-10
sp.record.text ,4-10
sp.record.toc ,4-9
sp.searchhistory.build ,4-13
sp.term.definition ,4-17
sp.term.prepare_detail ,4-17
sp.urlp . 4-10
sp.webspirs.version ,4-6
macro variables, 4-1
sp.age.subheading ,4-18
sp.avail.dbs.criteria.p ,4-9
sp.avail.dbs.item.endindent ,
sp.avail.dbs.item.id ,4-8
sp.avail.dbs.item.indent ,4-8
sp.avail.dbs.item.name ,4-8

Index-10

4-8

sp.back.form.p ,4-4
sp.back.form.title.p ,4-4
sp.check.name , 4-20
sp.check.selections ,4-21
sp.currentrecord ,4-11
sp.currentrecord.dbname ,4-11
sp.dbid.p ,4-8
sp.erl.server.address ,4-7
sp.export.mailto.p ,4-5
Sp.export.range.p ,4-4
Sp.export.recnums.p ,4-5
sp.export.save.history.p ,4-5
sp.form.foot.p ,4-4
sp.form.head.p ,4-3
sp.form.search.p ,4-3
sp.form.show.p ,4-3
sp.form.top.p ,4-4

sp.fsi.fields.p ,4-15
sp.fsi.howmany.p ,4-16
sp.fsi.term.p ,4-16
sp.guide.dbname , 4-19
sp.hotlink.form.p ,4-13
sp.login_error ,4-3

sp.mailemd , 4-24

sp.nextform , 4-3
sp.opened.dbs.item.name ,4-8
sp.output ,4-24

sp.password ,4-2
sp.perm.word.p ,4-18

sp.record.fields.p ,4-11
sp.record.howmany.p ,4-11
sp.record.labels.p ,4-12
sp.record.lastshown.p ,4-12
sp.record.marked.pp ,4-21
sp.record.number.p ,4-11
sp.record.sortfields.p ,4-12
sp.record.sortlimit.p ,4-12
sp.record.sortrecords.p ,4-12
sp.record.source.p ,4-11
sp.search.invalid_message ,4-3
sp.search.value.p ,4-13
sp.searchhistory.operator ,4-13
sp.select.terms.pp ,4-18
sp.tbar.page.value ,4-4
sp.template_description, 4-3
sp.term.narrower_terms ,4-18
sp.term.related_terms ,4-18
sp.thesaurus.term.p ,4-19
sp.thisform 4-2
sp.topical.subheading ,4-18
sp.username ,4-2
sp.webspirs.docdir ,4-7

macros

adding new macros, 4-24
administration, 4-6

automatic subject lookup (ASL), 4-14
categories, 4-1

example, 4-1

field list, 4-16

field-specific index (FSI), 4-14

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

general database, 4-7

guide keyword, 4-19

interface-specific variables, 4-2

marked records, 4-20

miscellaneous, 4-21

nested, 4-2

search, 4-13

text display, 4-9

thesaurus term, 4-16

useful services, 4-28
mail activation, 2-6

Linux platform, 2-6

Windows NT platform, 2-7
maildone.htm template, 3-11
mailopts.htm template, 3-10
MakeCheckboxHTML functions

www_HTML_Helper class, 5-31
MakeGuideToc function

www_Guide class, 5-27
MakeGuideTopic function

www_Guide class, 5-27
MakeHyperLink function

www_HTML_Helper class, 5-32
MakeLink function

www_Wild class, 5-51
MakeOptionHTML functions

www_HTML_Helper class, 5-31
MakeSPUrl function

www_Record class, 5-40
MakeUrl function

www_HTML_Helper class, 5-32
MakeWinspirsLink function

www_Database class, 5-16
MaxUsers function

www_ERLConnection class, 5-22
Mergeltem function

cgi_Config class, 5-3
mime.types file, 2-8
motd.htm template, 3-10
mrkclear.htm template, 3-12

N

Netscape browser, 2-1
news.htm template, 3-12

O

opening WebSPIRS on your browser, 2-8

overview of WebSPIRS, 1-1

P

pagesize.htm template, 3-12
password.htm template, 3-10
PasswordExpired function

www_ERLConnection class, 5-21, 5-22

PrepareTerm function
www_Search class, 5-45

preparing to install WebSPIRS, 2-1
PreprocessRequest function
www_FSI class, 5-26
www_HTML_Helper class, 5-29
www_Record class, 5-38
preselecting databases, 3-5
prntopts.htm template, 3-10
ProtocolError function
www_ERLConnection class, 5-23

R

ReadRequest function
cgi_Config class, 5-3
recdtoc.htm template, 3-10
recfmt.htm template, 3-12
recfmtck.htm template, 3-12
recfmtrw.htm template, 3-12
rechits.htm template, 3-11
RecordInitialize function
www_Record class, 5-38
recprint.htm template, 3-10
recsmark.htm template, 3-10
Refresh function
www_ERLConnection class, 5-20
RemoveDatabaseList function
www_Environment class, 5-19
Reset function
www_Alert class, 5-12
www_Database class, 5-15
www_FSI class, 5-25
www_HTML_Helper class, 5-30
www_Record class, 5-37
www_Request class, 5-42
www_Search class, 5-44
RestoreCodedCharacters function
cgi_Config class, 5-4
restricting access to WebSPIRS, 2-8
RoleInDefaults function
cgi_Config class, 5-3
RunMacro function
www_Request class, 5-42

S

saveopts.htm template, 3-10
scroll.htm template, 3-10
search.htm template, 3-10
seldbs.htm template, 3-11
SetClientAddress function
www_ERLConnection class, 5-20
SetConfirmPassword function
www_ERLConnection class, 5-21
SetCount function
www_HTML_Helper class, 5-33
SetDatabase function
dxp_to_html class, 5-5
erlAdmin_DBInfo class, 5-7
SetDescription function

SilverPlatter Proprietary

Index

WebSPIRS Implementor’s Guide

www_HTML_Helper class, 5-31
www_Macro class, 5-35
SetEchoFormsFlag function
www_Server class, 5-46, 5-47
SetErrorMessage function
www_ERLConnection class, 5-21
SetExpansionMethod function
www_Macro class, 5-35
setfield.htm template, 3-10
SetFieldName function
sgml_Field class, 5-10
SetFileNames function
www_Server class, 5-47
SetFormContents function
www_Template class, 5-48
SetKeyFoundFlag function
www_HTML_Helper class, 5-29
SetLoginRequired function
www_Macro class, 5-35
SetMacro function
www_HTML_Helper class, 5-33
SetName function
www_HTML_Helper class, 5-29
SetNewPassword function
www_ERLConnection class, 5-21
SetPipeName function
www_Server class, 5-47
SetRequest function
dxp_to_html class, 5-5
www_Environment class, 5-19
www_ERLConnection class, 5-21
www_Request class, 5-42
SetServer function
erlAdmin_UserInfo class, 5-8
SetTranslateFromDos function
dxp_to_html class, 5-5
SetUserName function
erlAdmin_UserInfo class, 5-8
sgml_Field class
~sgml_Field destructor, 5-10
GetContentField function, 5-10
GetContentType function, 5-10
SetFieldName function, 5-10
sgml_Field constructors, 5-10
showlrec.htm template, 3-10
ShowMessage function
www_ERLConnection class, 5-22
Solaris platform
installation procedure, 2-3
minimum hardware requirements, 2-3
SortRecords function
www_Record class, 5-38
sp.admin.balance macro command, 4-6
sp.admin.total.used macro command, 4-6
sp.age.subheading macro variable, 4-18
sp.asl.list macro command, 4-14
sp.assign macro command, 4-21

sp.avail.dbs.criteria.p macro variable,

49
sp.avail.dbs.foreach macro command, 4-7
sp.avail.dbs.item.endindent macro

variable, 4-8
sp.avail.dbs.item.id
sp.avail.dbs.item.indent

4-8
sp.avail.dbs.item.name macro variable, 4-8
sp.back.form.p macro variable, 4-4
sp.back.form.title.p macro variable, 4-4
sp.check.name macro variables, 4-20
sp.check.selections macro variable, 4-21
sp.checked macro command, 4-20

macro variable, 4-8
macro variable,

sp.currentrecord macro variable, 4-11

sp.currentrecord.absolute.url macro
command, 4-9

sp.currentrecord.abstract.cost macro

command, 4-9

sp.currentrecord.dbname macro variable,

4-11
sp.dbid.p macro variable, 4-8
sp.erl.logout macro command, 4-6
sp.erl.message.of.the.day macro

command, 4-6

sp.erl.server.address macro variable, 4-7

sp.expansionpart macro command, 4-17
sp.export.mailto.p macro variable, 4-5
sp.export.range.p macro variable, 4-4
Sp.export.recnums.p macro variables, 4-5
sp.export.save.history.p macro variable,
4-5
sp.field.list macro command, 4-16
sp.foreach macro command, 4-22
sp.form.foot.p macro variable, 4-4
sp.form.head.p macro variable, 4-3
sp.form.search.p macro variable, 4-3
sp.form.show.p macro variable, 4-3
sp.form.top.p macro variable, 4-4
sp.fsi.copytovariable macro command,
4-15
sp.fsi.fields.p macro variable, 4-15
sp.fsi.howmany.p macro variable, 4-16
sp.fsi.list macro command, 4-15
sp.fsi.term.p macro variable, 4-16
sp.fsi.tosearch macro command, 4-14
sp.generate_url macro command, 3-8, 4-23

sp.guide.dbname macro variable, 4-19
sp.guide.toc macro command, 4-19
sp.guide.topic macro command, 4-19
sp.hotlink.form.p macro variable, 4-13
sp.if macro command, 4-23

sp.include macro command, 4-23
sp.isinlist macro command, 4-20
sp.login_error macro variable, 4-3
sp.mailcmd macro variable, 4-24
sp.makespurl macro command, 4-10
sp.nextform macro variable, 4-3
sp.opened.dbs.foreach macro command, 4-7

Index-12 SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

sp.opened.dbs.item.name
4-8
sp.output macro variable, 4-24
sp.password macro variable, 4-2
sp.perm.word.p macro variable, 4-18
sp.record.counts macro command, 4-10
sp.record.fields.p macro variable, 4-11
sp.record.howmany.p macro variable, 4-11
sp.record.initialize macro command, 4-10
sp.record.labels.p macro variable, 4-12
sp.record.lastshown.p macro variable, 4-12
sp.record.marked.pp macro variable, 4-21
sp.record.number.p macro variable, 4-11
sp.record.sortfields.p macro variable,
4-12
sp.record.sortlimit.p
sp.record.sortrecords.p
4-12
sp.record.source.p
sp.record.text macro command, 4-10
sp.record.toc macro command, 4-9
sp.search.invalid_message macro variable,
4-3
sp.search.value.p
sp.searchhistory.build
4-13
sp.searchhistory.operator
4-13
sp.select.terms.pp
sp.tbar.page.value
sp.template_description
3-6,4-3
sp.term.definition
sp.term.narrower_terms
4-18
sp.term.prepare_detalil
4-17
sp.term.related_terms macro variable, 4-18
sp.thesaurus.term.p macro variable, 4-19
sp.thisform macro variable, 4-2
sp.topical.subheading macro variable, 4-18
sp.url.p macro command, 4-10
sp.username macro variable, 4-2
sp.webspirs.docdir macro variable, 4-7
sp.webspirs.version macro command, 4-6
srchcomn.htm template, 3-11
srchterm.htm template, 3-12
Start function
www_Environment class, 5-18
subject.htm template, 3-10
subtermd.htm template, 3-12
suggest.htm template, 3-10
sugsrch.htm template, 3-12
sugterm.htm template, 3-12

macro variable, 4-12
macro variable,

macro variable, 4-11

macro variable, 4-13
macro command,

macro variable,
macro variable, 4-18
macro variable, 4-4

macro variable,

macro command, 4-17
macro variable,

macro command,

T

table of helpers, 5-32
tables

creating, 3-7
example, 3-8
tags
[sp_blockK]...[/sp_block] R
[SP_MACRQ]...[ISP_MACRO] ,
tbar.htm template, 3-12
templates
action.htm , 3-11
checkbox.htm | 3-11
clrsrch.htm ,3-11
complete pages, 3-9
customizing, 3-1
database.htm | 3-9
dbitem.htm , 3-11
dblitmck.htm | 3-11
described, 3-1
diagram of main templates, 3-9
editing, 3-2
encoded macros, 3-1
exphtml.htm , 3-11
expmail.htm , 3-11
expraw.htm , 3-11
expterm.htm , 3-11
fielditm.htm ,3-11
foot.htm | 3-11
head.htm , 3-11
hotlink.htm ,3-9
index.htm , 3-9
indterm.htm | 3-11
large fragments, 3-11
location, 3-2
login.htm | 3-9
logout.htm , 3-9
maildone.htm , 3-11
mailopts.htm | 3-10
motd.htm , 3-10
mrkclear.htm
news.htm , 3-12
pagesize.htm , 3-12
password.htm , 3-10
prntopts.htm , 3-10
recdtoc.htm | 3-10
recfmt.htm , 3-12
recfmtck.htm , 3-12
recfmtrw.htm , 3-12
rechits.htm ,3-11
recprint.htm , 3-10
recsmark.htm , 3-10
saveopts.htm , 3-10
scroll.htm , 3-10
search.htm , 3-10
seldbs.htm , 3-11
setfield.htm , 3-10
showlrec.htm , 3-10
srchcomn.htm , 3-11
srchterm.htm , 3-12
states
editable, 3-2
processed, 3-3

3-12

>

SilverPlatter Proprietary Index-13

Index

WebSPIRS Implementor’s Guide

subject.htm , 3-10
subtermd.htm , 3-12
suggest.htm , 3-10
sugsrch.htm , 3-12
sugterm.htm , 3-12
tbar.htm | 3-12
thesitem.htm | 3-12
thesterm.htm | 3-10
top.htm | 3-12
urlsrch.htm , 3-10
utility fragments, 3-11
Terminate function
www_HTML_Helper class, 5-32
thesitem.htm template, 3-12
thesterm.htm template, 3-10
top.htm template, 3-12

tutorial for customizing WebSPIRS templates, 3-1

U

URLDecodeString function
cgi_Config class, 5-4
URLEncodeString function
cgi_Config class, 5-3
URLs

Library of Congress graphics resources, 3-6
Library of Congress Internet resources, 3-2

urlsrch.htm template, 3-10

W

WebSite server, 2-1
WebSPIRS
major features, 1-1
overview, 1-1
process, 1-3
process diagram, 1-1
Windows NT platform
installation procedure, 2-5
minimum hardware requirements, 2-5
www_Admin class
~www_Admin destructor, 5-11
GetCostPerAbstract function, 5-11
www_Admin constructor, 5-11
www_Alert class
~www_Alert destructor, 5-12
AddAlert function, 5-12
EvaluateAlert function, 5-12
Reset function, 5-12
www_Alert constructor, 5-12
www_Arguments class
~www_Arguments destructor, 5-13
AddExpandTag function, 5-13
operator= function, 5-13
www_Arguments constructors, 5-13
www_Database class
~www_Database destructor, 5-15
BuildAllFieldSets function, 5-17
DatabaseForEach function, 5-16

Index-14

GetDatabase function, 5-15
GetDatabaseDescriptions function, 5-16
GetDatabaseName function, 5-15
GetDatabaseTag function, 5-16
GetDatabaseTitleScreens function, 5-16
GetDatesCovered function, 5-16
GetListForEach function, 5-16
MakeWinspirsLink function, 5-16
Reset function, 5-15

www_Database constructor, 5-15

www_Environment class

~www_Environment destructor, 5-18
Assert function, 5-18
GetCurrentDatabaseList function, 5-19
GetDatabaseList function, 5-19
GetERLPath function, 5-19

GetPtr function, 5-19

Idle function, 5-18
RemoveDatabaseList function, 5-19
SetRequest function, 5-19

Start function, 5-18
www_Environment constructor, 5-18

www_ERLConnection class

~www_ERLConnection destructor, 5-20
BadUser function, 5-22
ConnectionDied function, 5-23
DXPError function, 5-23
FatalErrorOccurred function, 5-20
GetClientAddress function, 5-21
GetErrorMessage function, 5-21
GetExpiredServer function, 5-21
GetSelf function, 5-22

Login function, 5-22

LoginFailed function, 5-20

MaxUsers function, 5-22
PasswordExpired function, 5-21, 5-22
ProtocolError function, 5-23

Refresh function, 5-20
SetClientAddress function, 5-20
SetConfirmPassword function, 5-21
SetErrorMessage function, 5-21
SetNewPassword function, 5-21
SetRequest function, 5-21
ShowMessage function, 5-22
www_ERLConnection constructor, 5-20

www_Field class

~www_Field destructor, 5-24
GetFieldList function, 5-24
GetFieldListForEach function, 5-24
www_Field constructor, 5-24

www_FSI class

~www_FSI destructor, 5-25
CopyToVariable function, 5-26
DoFSIToc function, 5-25
FSIToSearch function, 5-25
GetFSIList function, 5-25
PreprocessRequest function, 5-26
Reset function, 5-25

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

www_FSI constructor, 5-25
www_Guide class
~www_Guide destructor, 5-27
GetGuideDBName function, 5-27
MakeGuideToc function, 5-27
MakeGuideTopic function, 5-27
www_Guide constructor, 5-27
www_HTML_Helper class
~www_HTML_Helper destructor, 5-28
AddHelperConstructor function, 5-33
ConstructHelpers function, 5-33
GetDatabase function, 5-30
GetDescription function, 5-31
GetExpansionString function, 5-30
GetHelperCount function, 5-33
GetHiddenVariables function, 5-30
GetKeyFoundFlag function, 5-29
GetMacro function, 5-30
GetMacroCount function, 5-30
GetName function, 5-28
GetRecords function, 5-29
GetRequest function, 5-30
Init function, 5-28
Initialize function, 5-32
InterpretArguments function, 5-31
LoadGatewayFile function, 5-32
LoginRequired function, 5-30
Lookup function, 5-29
MakeCheckboxHTML functions, 5-31
MakeHyperLink function, 5-32
MakeOptionHTML functions, 5-31
MakeUrl function, 5-32
PreprocessRequest function, 5-29
Reset function, 5-30
SetCount function, 5-33
SetDescription function, 5-31
SetKeyFoundFlag function, 5-29
SetMacro function, 5-33
SetName function, 5-29
table of helpers, 5-32
Terminate function, 5-32
www_HTML _Helper constructor, 5-28
www_Macro class
~www_Macro destructor, 5-34
AlwaysGenerateHidden function, 5-35
ExpansionMethod function, 5-35
GetDescription function, 5-35
GetExpansionMethod function, 5-35
GetName function, 5-34
IsContextVariable function, 5-35
LoginRequired function, 5-35
operator= function, 5-34
SetDescription function, 5-35
SetExpansionMethod function, 5-35
SetLoginRequired function, 5-35
www_Macro constructors, 5-34
www_MacroCaller class
~www_MacroCaller destructor, 5-36

SilverPlatter Proprietary

Lookup function, 5-36
www_MacroCaller constructor, 5-36

www_Record class

~www_Record destructor, 5-37
BetweenTOC function, 5-40

DoURL function, 5-39
GetAbstractCostPerRecord function, 5-40
GetCurrentDBID function, 5-39
GetCurrentDBName function, 5-40
GetCurrentPlainText function, 5-39
GetCurrentRecordText function, 5-39
GetCurrentRecordURL function, 5-40
GetCurrentRecordValue function, 5-39
GetHowMany function, 5-38
GetLastURL function, 5-40
GetRecordCounts function, 5-37
GetRecordField function, 5-40
GetRecordFieldText function, 5-38
GetRecordNumber function, 5-38
GetRecords function, 5-38
GetRecordsExtracted function, 5-37
GetRecordText function, 5-37
GetTableOfContents function, 5-38
MakeSPUrl function, 5-40
PreprocessRequest function, 5-38
RecordInitialize function, 5-38

Reset function, 5-37

SortRecords function, 5-38
www_Record constructor, 5-37

www_Request class

~www_Request destructor, 5-41
ConvertConcatSymbol function, 5-43
DblRefresh function, 5-43
DoCommands function, 5-42
GenerateForm function, 5-42
GetDatabase function, 5-43
GetErrorMessage function, 5-43
GetHelper function, 5-43
GetHelperCount function, 5-43
GetHiddenVariables function, 5-42
GetRecords function, 5-43
IsTemplateDriven function, 5-42
operator= function, 5-41

Reset function, 5-42

RunMacro function, 5-42
SetRequest function, 5-42
www_Request constructors, 5-41

www_Search class

~www_Search destructor, 5-44
DoPermutedList function, 5-45
GetASLList function, 5-44
GetRecords function, 5-44
GetSearchText function, 5-45
GetTermDefinition function, 5-45
PrepareTerm function, 5-45
Reset function, 5-44
www_Search constructor, 5-44

www_Server class

Index-15

Index

WebSPIRS Implementor’s Guide

~www_Server destructor, 5-46
GetEchoFormsFlag function, 5-47

GetEchoRequestsFlag function, 5-46

Go function, 5-46

SetEchoFormsFlag function, 5-46, 5-47

SetFileNames function, 5-47
SetPipeName function, 5-47
www_Server constructor, 5-46
www_Template class
~www_Template destructor, 5-48
GetForm function, 5-49
SetFormContents function, 5-48
www_Template constructors, 5-48
www_User class
~www_User destructor, 5-49

Index-16

AssignValue function, 5-49
ForEach function, 5-50
GenerateURL function, 5-50
GetMacroList function, 5-49
GetValue function, 5-50
IfCond function, 5-50
IncludeTemplate function, 5-49
www_User constructor, 5-49
www_Wild class
~www_Wild destructor, 5-51
BuildSGMLToCURL function, 5-51
GetCitation function, 5-51
GetNotation function, 5-51
MakeLink function, 5-51
www_Wild constructor, 5-51

SilverPlatter Proprietary

WebSPIRS Implementor’s Guide

SilverPlatter Proprietary Index-17

