metagenomeSeq: Statistical analysis for sparse
high-throughput sequencing

Joseph Nathaniel Paulson

Applied Mathematics & Statistics, and Scientific Computation
Center for Bioinformatics and Computational Biology
University of Maryland, College Park

jpaulson@umiacs.umd.edu

Modified: October 6, 2014. Compiled: December 18, 2014

Contents

(1 Introduction|

|2 Data preparation|
2.1 Example datasets|.
2.2 Loading count datal.
2.3 Loading taxonomy| e
2.4 Loading metadata]
[2.5 Creating a MRexperiment object|

BN Tization
[3.1 Calculating normalization factors|
3.2 Exporting data]

|4 Statistical testing|
4.1 Zero-inflated Gaussian mixture modell oL L.
[4.1.1 Example using fitZig for difterential abundance testingl
[4.1.2 Multiple groups|.
[4.1.3 Exporting fits|.
4.2 Time series analysis| L
[4.2.1 Time series plotting] oo

4.4 Presence-absence testing]
|4.5 Discovery odds ratio testing|
4.6 Feature correlations

[Aggregating features|

w

N e NI N G; RTNNTSN

10
10

12
12
12
14
15
16
18
19
20
20
21

22

6 Visualizab T l
|6.1 Interactive Display]|

6.3 Feature specific|

[7.1 Citing metagenomedeq|

[.2 Session Infal

I8 Appendix]
[8.1 Appendix A: MRexperiment internals|
8.2 Appendix B: Mathematical model|
[8.3 Appendix C: Calculating the proper percentile|

23
23
23
25

28
28
28

metagenomeSeq
overview

Prepare
Step 1 MRexperiment
object
A
- 1. Visualize data
Step 2 Normalization 2. Save results
A
- . 1. Abundance
>
Step 3 Statistical testing 2 P/A

Figure 1: General overview. metagenomeSeq requires the user to convert their data into MR-
experiment objects. Using those MRexperiment objects, one can normalize their data, run
statistical tests (abundance or presence-absence), and visualize or save results.

1 Introduction

This is a vignette for pieces of an association study pipeline. For a full list of
functions available in the package: help(package=metagenomeSeq). For more in-
formation about a particular function call: ?function.

Metagenomics is the study of genetic material targeted directly from an environmental com-
munity. Originally focused on exploratory and validation projects, these studies now focus on
understanding the differences in microbial communities caused by phenotypic differences. Ana-
lyzing high-throughput sequencing data has been a challenge to researchers due to the unique
biological and technological biases that are present in marker-gene survey data.

We present a R package, metagenomeSeq, that implements methods developed to account
for previously unaddressed biases specific to high-throughput sequencing microbial marker-gene
survey data. Our method implements a novel normalization technique and method to account
for sparsity due to undersampling. Other methods include White et al.’s Metastats and Segata
et al.’s LEfSe. The first is a non-parametric permutation test on t-statistics and the second is a
non-parametric Kruskal-Wallis test followed by subsequent wilcox rank-sum tests on subgroups
to guard against positive discoveries of differential abundance driven by potential confounders -
neither address normalization nor sparsity.

This vignette describes the basic protocol when using metagenomeSeq. A normalization
method able to control for biases in measurements across taxanomic features and a mixture
model that implements a zero-inflated Gaussian distribution to account for varying depths of
coverage are implemented. Using a linear model methodology, it is easy to include confounding
sources of variability and interpret results. Additionally, visualization functions are provided to
examine discoveries.

The software was designed to determine features (be it Operational Taxanomic Unit (OTU),
species, etc.) that are differentially abundant between two or more groups of multiple samples.
The software was also designed to address the effects of both normalization and undersampling
of microbial communities on disease association detection and testing of feature correlations.

2 Data preparation

Microbial marker gene sequence data is preprocessed and counts are algorithmically defined from
project-specific sequence data by clustering reads according to read similarity. Given m features
and n samples, the elements in a count matrix C (m,n), ¢;j, are the number of reads annotated
for a particular feature ¢ (whether it be OTU, species, genus, etc.) in sample j.

sample; samples ... sample,
feature; c11 c12 Cin
features c21 C29 . Con
feature,, Cm1 Cm2 ... Cmn

Count data should be stored in a delimited (tab by default) file with sample names along
the first row and feature names along the first column.

Data is prepared and formatted as a MRexperiment object. For an overview of the internal
structure please see Appendix A.

2.1 Example datasets

There are two datasets included as examples in the metagenomeSeq package. Data needs to
be in a MRexperiment object format to normalize, run statistical tests, and visualize. As an
example, throughout the vignette we’ll use the following datasets. To understand a function’s
usage or included data simply enter 7functionName.

library (metagenomeSeq)

1. Human lung microbiome : The lung microbiome consists of respiratory flora sampled
from six healthy individuals. Three healthy nonsmokers and three healthy smokers. The
upper lung tracts were sampled by oral wash and oro-/nasopharyngeal swabs. Samples
were taken using two bronchoscopes, serial bronchoalveolar lavage and lower airway pro-
tected brushes.

data (lungData)
lungData

MRexperiment (storageMode: environment)

assayData: 51891 features, 78 samples

element names: counts

protocolData: none

phenoData

#4# sampleNames: CHK_6467_E3B11_ BRONCH2_PREWASH_V1V2
#4# CHK_6467_E3B11_OW_V1V2 ... CHK 6467 _E3B09_BAIL_A V1V2
(78 total)

varLabels: SampleType SiteSampled SmokingStatus
varMetadata: labelDescription

featureData

#4# featureNames: 1 2 ... 51891 (51891 total)

fvarLabels: taxa

fvarMetadata: labelDescription

experimentData: use 'experimentData (object)'
pubMedIds: 21680950

Annotation:

2. Humanized gnotobiotic mouse gut : Twelve germ-free adult male C57BL/6J mice were
fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult
human fecal material. Following the fecal transplant, mice remained on the low-fat, plant
polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a
high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through
PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of exper-
imental protocols and further details of the data can be found in Turnbaugh et. al.
Sequences and further information can be found at: http://gordonlab.wustl.edu/
TurnbaughSE_10_09/STM_2009.html

data (mouseData)
mouseData

MRexperiment (storageMode: environment)
assayData: 10172 features, 139 samples
element names: counts

protocolData: none

phenoData

sampleNames: PM1:20080107 PM1:20080108 ... PM9:20080303
#4# (139 total)
#4# varLabels: mouselID date ... status (5 total)

varMetadata: labelDescription
featureData

featureNames: Prevotellaceae:1 Lachnospiraceae:l
#4# Parabacteroides:956 (10172 total)
fvarLabels: taxa class

fvarMetadata: labelDescription
experimentData: use 'experimentData (object)'
Annotation:

2.2 Loading count data

Following preprocessing and annotation of sequencing data metagenomeSeq requires a count
matrix with features along rows and samples along the columns. metagenomeSeq includes
functions for loading delimited files of counts 1oad_meta and phenodata 1oad_phenoData.

As an example, a portion of the lung microbiome |1] OTU matrix is provided in metagenomeSeq’s
library "extdata” folder. The OTU matrix is stored as a tab delimited file. 1oad meta loads
the taxa and counts into a list.

dataDirectory <- system.file("extdata", package = "metagenomeSeq")
lung = load_meta (file.path (dataDirectory, "CHK_NAME.otus.count.csv"))
dim (lung$counts)

[1] 1000 78

http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html
http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html

2.3 Loading taxonomy

Next we want to load the annotated taxonomy. Check to make sure that your taxa annotations
and OTUs are in the same order as your matrix rows.

taxa = read.delim(file.path (dataDirectory, "CHK_otus.taxonomy.csv"),
stringsAsFactors = FALSE)

As our OTUs appear to be in order with the count matrix we loaded earlier, the next step
is to load phenodata.

Warning: features need to have the same names as the rows of the count matrix when we
create the MRexperiment object for provenance purposes.

2.4 Loading metadata

Phenotype data can be optionally loaded into R with 1oad_phenoData. This function loads
the data as a list.

clin = load_phenoData (file.path(dataDirectory, "CHK_clinical.csv"),
tran = TRUE)

ord = match (colnames (lung$Scounts), rownames (clin))

clin = clinford,]

head(clin([1:2,])

SampleType

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronch2.PreWash

CHK_6467_E3B11_OW_V1V2 oW

SiteSampled
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronchoscope.Channel
CHK_6467_E3B11_OW_V1V2 OralCavity
SmokingStatus

CHK_6467_E3B11_BRONCH2_ PREWASH V1V2 Smoker

CHK_6467_E3B11_OW_V1V2 Smoker

Warning: phenotypes must have the same names as the columns on the count matrix when
we create the MRexperiment object for provenance purposes.

2.5 Creating a MRexperiment object

Function newMRexperiment takes a count matrix, phenoData (annotated data frame), and
featureData (annotated data frame) as input. Biobase provides functions to create annotated
data frames. Library sizes (depths of coverage) and normalization factors are also optional
inputs.

phenotypeData = AnnotatedDataFrame (clin)
phenotypeData

An object of class 'AnnotatedDataFrame'

rowNames: CHK_6467_E3B11_BRONCH2_ PREWASH V1V2

CHK_6467_E3B11_OW _V1V2 ... CHK_6467_E3B09_BAL_A_V1V2
(78 total)

varLabels: SampleType SiteSampled SmokingStatus

varMetadata: labelDescription

A feature annotated data frame. In this example it is simply the OTU numbers, but it can
as easily be the annotated taxonomy at multiple levels.

OTUdata = AnnotatedDataFrame (taxa)
OTUdata

An object of class 'AnnotatedDataFrame'

#4# rowNames: 1 2 ... 1000 (1000 total)

varLabels: OTU Taxonomy ... strain (10 total)
varMetadata: labelDescription

obj = newMRexperiment (lungS$counts, phenoData=phenotypeData, featureData=0TUdata)
Links to a paper providing further details can be included optionally.

experimentData (obj) = annotate::pmid2MIAME ("21680950")

obj

MRexperiment (storageMode: environment)

assayData: 1000 features, 78 samples

element names: counts

protocolData: none

phenoData

sampleNames: CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
#4# CHK_6467_E3B11 _OW _V1V2 ... CHK 6467 E3B09 BAL_ A V1V2
#4 (78 total)

varLabels: SampleType SiteSampled SmokingStatus
varMetadata: labelDescription

featureData

#4# featureNames: 1 2 ... 1000 (1000 total)

fvarLabels: OTU Taxonomy ... strain (10 total)
fvarMetadata: labelDescription

experimentData: use 'experimentData (object)'

Annotation:

Alternatively, you can load in Biome-format data (outputs of QIIME and Mothur) using the
load-biom function. If a biom class object is already loaded into R it can be converted to a
MRexperiment-class object using the biom2MRexperiment function

2.6 Useful commands

Phenotype information can be accessed with the phenoData and pData methods:
phenoData (obj)

An object of class 'AnnotatedDataFrame'

sampleNames: CHK_6467_E3B11_BRONCH2_PREWASH_V1V2

#4# CHK_6467_E3B11 _OW_V1V2 ... CHK 6467 E3B09 BAL_A V1V2
(78 total)

varLabels: SampleType SiteSampled SmokingStatus

varMetadata: labelDescription

head (pData (obj), 3)

#i# SampleType
CHK_6467_E3B11_BRONCH2_PREWASH_ V1V2 Bronch?2.PreWash

CHK_6467_E3B11_OW_V1V2 oW

CHK_6467_E3B08_OW_V1V2 OW

#4# SiteSampled
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronchoscope.Channel
CHK_6467_E3B11_OW_V1V2 OralCavity
CHK_6467_E3B08_OW_V1V2 OralCavity
#4# SmokingStatus

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Smoker

CHK 6467 _E3B11_OW _V1V2 Smoker

CHK_6467_E3B08_OW_V1V2 NonSmoker

Feature information can be accessed with the featureData and £Data methods:

featureData (obj)

An object of class 'AnnotatedDataFrame'

#+# featureNames: 1 2 ... 1000 (1000 total)

#4# varLabels: OTU Taxonomy ... strain (10 total)
varMetadata: labelDescription

head (fData (obj) [, -c(2, 10)1, 3)

#4# OTU superkingdom phylum class
1 1 Bacteria Proteobacteria Epsilonproteobacteria
##+ 2 2 <NA> <NA> <NA>
3 3 Bacteria Actinobacteria Actinobacteria (class)
#4# order family genus

1 Campylobacterales Campylobacteraceae Campylobacter

2 <NA> <NA> <NA>

3 Actinomycetales Actinomycetaceae Actinomyces

species

1 Campylobacter rectus

#H# 2 <NA>

3 Actinomyces radicidentis

The raw or normalized counts matrix can be accessed with the MRcounts function:

head (MRcounts (obj[, 1:2]))

CHK_6467_E3B11_BRONCH2Z_PREWASH_V1V2 CHK_6467_E3Bl11_OW_V1V2
#4# 0
#4#
##
##
##
##

o O b W N
O O O O O
O O O O O O

A MRexperiment-class object can be easily subsetted, for example:

featuresToKeep = which (rowSums (obj) >= 100)

samplesToKeep = which (pData (obj) $SmokingStatus == "Smoker")
obj_smokers = obj[featuresToKeep, samplesToKeep]
obj_smokers

MRexperiment (storageMode: environment)

assayData: 1 features, 33 samples

#i# element names: counts

protocolData: none

phenoData

#4# sampleNames: CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
#4# CHK_6467_E3B11_OW_V1V2 ... CHK_6467_E3B0S9_BAL_A_V1V2
#4# (33 total)

#4# varLabels: SampleType SiteSampled SmokingStatus
varMetadata: labelDescription

featureData

#i# featureNames: 570

#4 fvarLabels: OTU Taxonomy ... strain (10 total)
fvarMetadata: labelDescription

experimentData: use 'experimentData (object)'

Annotation:

head (pData (obj_smokers), 3)

SampleType

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronch2.PreWash

CHK_6467_E3B11_OW_V1V2 o

CHK_6467_E3B11_BAL_A_V1V2 BAL.A

SiteSampled
CHK_6467_FE3B11_BRONCH2_PREWASH_V1V2 Bronchoscope.Channel
CHK _6467_E3B11 _OW_V1V2 OralCavity
CHK_6467_E3B11_BAL_A_V1V2 Lung
#i# SmokingStatus

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Smoker

CHK_6467_E3B11 _OW_V1V2 Smoker

CHK_6467_E3B11 BAL_ A _V1V2 Smoker

3 Normalization

Normalization is required due to varying depths of coverage across samples. cumNorm is a
normalization method that calculates scaling factors equal to the sum of counts up to a particular
quantile.

Denote the [th quantile of sample j as qé, that is, in sample j there are [taxonomic features
with counts smaller than qé-. For [= [.95m| then qé- corresponds to the 95th percentile of the
count distribution for sample j.

Denote sé- = Z(i|c~j<ql) c¢ij as the sum of counts for sample j up to the [th quantile. Our
i =4;

normalization chooses a value | < m to define a normalization scaling factor for each sample
. ~ Cij
to produce normalized counts c¢;; = =+ N where N is an appropriately chosen normalization
st

constant. See Appendix C for more information on how our method calculates the proper
percentile.
These normalization factors are stored in the experiment summary slot. Functions to deter-
mine the proper percentile cumNormStat, save normalized counts exportMat, or save various
sample statistics exportStats are also provided. Normalized counts can be called easily by
cumNormMat (MRexperimentObject) or MRcounts (MRexperimentObject, norm=TRUE, log=FALSE)

3.1 Calculating normalization factors

After defining a MRexperiment object, the first step is to calculate the proper percentile by
which to normalize counts. There are several options in calculating and visualizing the relative
differences in the reference. Figure 3 is an example from the lung dataset.

data (lungData)
p = cumNormStatFast (lungData)

To calculate the scaling factors we simply run cumNorm
lungData = cumNorm (lungData, p = p)

The user can alternatively choose different percentiles for the normalization scheme by spec-
ifying p.

There are other functions, including normFactors, cumNormMat, that return the normal-

ization factors or a normalized matrix for a specified percentile. To see a full list of functions
please refer to the manual and help pages.

3.2 Exporting data

To export normalized count matrices:

mat = MRcounts (lungData, norm = TRUE, log = TRUE) [1:5, 1:5]
exportMat (mat, file = file.path(dataDirectory, "tmp.tsv"))

To save sample statistics (sample scaling factor, quantile value, number of identified features
and library size):

exportStats (lungData[, 1:5], file = file.path(dataDirectory, "tmp.tsv"))
head (read.csv(file = file.path (dataDirectory, "tmp.tsv"), sep = "\t"))

10

#4#
#4#
#4#
##
##
##
##
##
##
##
##
ik

1
2
3
4
5

g s w N

Subject

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
CHK_6467_E3B11_OW_V1V2
CHK_6467_E3B08_OW_V1V2

CHK_6467_E3B07_BAL_A_V1V2
CHK_6467_E3B11_BAL_A_VI1V2
Quantile.value Number.of.identified

2

[

11

Scaling.factor

67
2475
2198

836
1008

.features Library.size

60
3299
2994
1188
1098

271
7863
8360
5249
3383

Human microbiome project

Number of detected features

B —
0 10000 20000 30000
Depth of coverage

Figure 2: The number of unique features is plotted against depth of coverage for samples from the Human
Microbiome Project . Including the depth of coverage and the interaction of body site and sequencing site
we are able to acheive an adjusted R? of .94. The zero-inflated Gaussian mixture was developed to account for
missing features.

4 Statistical testing

Now that we have taken care of normalization we can address the effects of under sampling on
the detecting differentially abundant features (OTUs, genes, etc).

4.1 Zero-inflated Gaussian mixture model

The depth of coverage in a sample is directly related to how many features are detected in a
sample motivating our zero-inflated Gaussian (ZIG) mixture model. Figure 2 is representative of
the linear relationship between depth of coverage and OTU identification ubiquitous in marker-
gene survey datasets currently available. For a quick overview of the mathematical model see
Appendix B.

Function £itzig performs a complex mathematical optimization routine to estimate prob-
abilities that a zero for a particular feature in a sample is a technical zero or not. The function
relies heavily on the 1imma package . Design matrices can be created in R by using the
model .matrix function and are inputs for fitZig.

For large survey studies it is often pertinent to include phenotype information or confounders
into a design matrix when testing the association between the abundance of taxonomic features
and a phenotype phenotype of interest (disease, for instance). Our linear model methodology can
easily incorporate these confounding covariates in a straightforward manner. fitZig output
includes weighted fits for each of the m features. Results can be filtered and saved using MRcoefs
or MRtable.

4.1.1 Example using fitZig for differential abundance testing

Warning: The user should restrict significant features to those with a minimum number of
positive samples. What this means is that one should not claim features are significant unless
the effective number of samples is above a particular percentage. For example, fold-change

12

Trimmed lung data

0.5
|

0.4

Relative difference for reference
0.2 0.3

‘ | \

B A H‘H’HHHH I” dm L “J M\M AU\AJUHHL il ML

T T T T T
0 0.25 0.5 0.75 1

0.1

0.0

Index

Figure 3: Relative difference for the median difference in counts from the reference.

estimates might be unreliable if an entire group does not have a positive count for the feature
in question.

We recommend the user remove features based on the number of estimated effective samples,
please see calculateEffectiveSamples. We recommend removing features with less than
the average number of effective samples in all features. In essence, setting eff = .5 when using
MRcoefs, MRfulltable, or MRtable. To find features absent from a group the function
uniqueFeatures provides a table of the feature ids, the number of positive features and reads
for each group.

In our analysis of the lung microbiome data, we can remove features that are not present
in many samples, controls, and calculate the normalization factors. The user needs to decide
which metadata should be included in the linear model.

controls = grep ("Extraction.Control", pData(lungData)$SampleType)

lungTrim = lungDatal[, -—-controls]

sparseFeatures = which (rowSums (MRcounts (lungTrim) > 0) < 10)

lungTrim = lungTrim[-sparseFeatures,]

lungp = cumNormStat (lungTrim, pFlag = TRUE, main = "Trimmed lung data")
lungTrim = cumNorm (lungTrim, p = lungp)

After the user defines an appropriate model matrix for hypothesis testing there are optional
inputs to fitZig, including settings determined by zigControl. We ask the user to review
the help files for both fitZig and zigControl. For this example we include body site as
covariates and want to test for the bacteria differentially abundant between smokers and non-
smokers.

smokingStatus = pData (lungTrim) $SmokingStatus

bodySite = pData (lungTrim) $SampleType
normFactor = normFactors (lungTrim)

13

normFactor = log2 (normFactor/median (normFactor) + 1)

mod = model .matrix (" smokingStatus + bodySite + normFactor)

settings = zigControl (maxit = 10, verbose = TRUE)

fit = fitZig(obj = lungTrim, mod mod, useCSSoffset = FALSE, control = settings

1it= 0, nll=88.42, 1loglO (eps+1l)=Inf, stillActive=1029
1it= 1, nl1=93.56, 1loglO (eps+1)=0.06, stillActive=261
it= 2, nll1l=93.46, 1loglO(eps+1)=0.05, stillActive=120
it= 3, nll1l=93.80, 1loglO(eps+1)=0.05, stillActive=22
1it= 4, nll1=93.94, 1loglO(eps+1)=0.03, stillActive=3
it= 5, nl1=93.93, 1logl0(eps+1)=0.00, stillActive=1
it= 6, nl1=93.90, 1loglO(eps+1)=0.00, stillActive=1
it= 7, nll=93.87, loglO(eps+1)=0.00, stillActive=1
i1it= 8, nl1=93.86, 1logl0 (eps+1)=0.00, stillActive=1
it= 9, nl1=93.85, 1loglO(eps+1)=0.00, stillActive=1

The default, useCSSoffset = TRUE, automatically includes the CSS
scaling normalization factor.

The result, fit, is a list providing detailed estimates of the fits including a 1imma fit in
fit$fit and an ebayes statistical fit in fitSeb. This data can be analyzed like any 1imma
fit and in this example, the column of the fitted coefficientsrepresents the fold-change for our
”smoker” vs. "nonsmoker” analysis.

Looking at the particular analysis just performed, there appears to be OTUs representing two
Prevotella, two Neisseria, a Porphyromonas and a Leptotrichia that are differentially abundant.
One should check that similarly annotated OTUs are not equally differentially abundant in
controls.

Alternatively, the user can input a model with their own normalization factors including them
directly in the model matrix and specifying the option useCSSoffset = FALSE in fitZig.

4.1.2 Multiple groups

Assuming there are multiple groups it is possible to make use of Limma’s topTable functions
for F-tests and contrast functions to compare multiple groups and covariates of interest. The
output of fitZig includes a '"MLArrayLM’ Limma object that can be called on by other functions.
When running fitZig by default there is an additional covariate added to the design matrix. The
fit and the ultimate design matrix are crucial for contrasts.

settings = zigControl (maxit = 1, verbose = FALSE)
mod = model .matrix("bodySite)

colnames (mod) = levels (bodySite)

fitting the ZIG model

res = fitZig(obj = lungTrim, mod = mod, control = settings)

The output of fitZig contains a 1list of various useful items
hint: names (res). Probably the most useful is the limma

'MLArrayLM' object called fit.
zigFit = res$fit
finalMod = res$fitSdesign

contrast.matrix = makeContrasts (BAL.A - BAL.B, OW — PSB, levels = finalMod)

fit2 = contrasts.fit (zigFit, contrast.matrix)
fit2 = eBayes (fit2)

14

topTable (fit2)

#4# BAL.A...BAL.B OW...PSB AveExpr F P.Value
6901 0.173441382 1.466113 0.2435881 13.853265 1.185023e-05
6291 -0.106957350 1.658829 0.4671470 13.729227 1.289286e-05
40291 0.068929259 1.700238 0.2195735 13.190131 1.865332e-05
37977 -0.379954612 2.174071 0.4526060 12.809340 2.428240e-05
18531 0.373187924 2.075648 0.7343081 12.744687 2.540042e-05
40329 -0.071459976 1.481582 0.2475735 10.890870 9.518411e-05
7343 -0.228590783 1.559465 0.3116465 10.726007 1.073649e-04
36117 -0.286658827 2.233996 0.4084024 10.500278 1.267123e-04
46525 -0.003944065 1.643531 0.2636173 10.301332 1.467495e-04
7114 0.237252527 1.032275 0.2044220 9.464994 2.742563e-04
adj.P.vVal
6901 0.005227407
6291 0.005227407
40291 0.005227407
37977 0.005227407
18531 0.005227407
40329 0.015782637
7343 0.015782637
36117 0.016298371
46525 0.016778354
7114 0.026096051

See help pages on decideTests, topTable, topTableF, vennDiagram,
etc.

Further specific details can be found in section 9.3 and beyond of the Limma user guide.
The take home message is that to make use of any Limma functions one needs to extract the
final model matrix used: res$fit§design and the MLArrayLM Limma fit object: res$fit.

4.1.3 Exporting fits

Currently functions are being developed to wrap and output results more neatly, but MRcoefs,
MRtable, MRfulltable can be used to view coefficient fits and related statistics and export
the data with optional output values - see help files to learn how they differ. An important note
is that the by variable controls which coefficients are of interest whereas coef determines the
display.

To only consider features that are found in a large percentage of effectively positive (positive
samples + the weight of zero counts included in the Gaussian mixture) use the eff option in the
MRtables.

taxa = sapply (strsplit (as.character (fData (lungTrim) $taxa), split = ";"),
function (i) {
i[length (i)]
H
head (MRcoefs (fit, taxa = taxa, coef = 2))
smokingStatusSmoker
Neisseria polysaccharea -4.031612

15

Neisseria meningitidis -3.958899

Prevotella intermedia -2.927686
Porphyromonas sp. UQD 414 -2.675306
Prevotella paludivivens 2.575672
Leptotrichia sp. oral clone FP036 2.574172
pvalues adjPvalues
Neisseria polysaccharea 6.064532e-15 2.496161e-13
Neisseria meningitidis 1.617066e-14 6.162817e-13
Prevotella intermedia 1.869400e-12 5.343369%e-11
Porphyromonas sp. UQD 414 8.705169e-10 1.279660e-08
Prevotella paludivivens 2.767250e-08 2.230904e-07
Leptotrichia sp. oral clone FP036 1.382567e-37 6.091832e-35

4.2 Time series analysis

Implemented in the fitTimeSeries function is a method for calculating time intervals for
which bacteria are differentially abundant. Fitting is performed using Smoothing Splines ANOVA
(SS-ANOVA), as implemented in the gss package. Given observations at multiple time points
for two groups the method calculates a function modeling the difference in abundance across all
time. Using group membership permutations we estimate a null distribution of areas under the
difference curve for the time intervals of interest and report significant intervals of time.

Use of the function for analyses should cite: ”Finding regions of interest in high throughput
genomics data using smoothing splines” Talukder H, Paulson JN, Bravo HC. (Submitted)

The gnotobiotic mice come from a longitudinal study ideal for

this type of analysis. We choose to perform our analysis at the

class level and look for differentially abundant time intervals

for 'Actinobacteria'. For demonstrations sake we perform only

10 permutations.

res = fitTimeSeries (obj = mouseData, lvl = "class", feature = "Actinobacteria",

class = "status", id = "mouseID", time = "relativeTime", B = 10)

Loading required package: gss

We observe a time period of differential abundance for
'"Actinobacteria'
res$timeIntervals

Interval start Interval end Area p.value
[1,] 9 50 90.70142 0
str (res)

List of 5
S timeIntervals: num [1, 1:4] 9 50 90.7 O

#4# ..— attr(*, "dimnames")=List of 2

i$: NULL

#4#$: chr [1:4] "Interval start" "Interval end" "Area" "p.value"
S data :'data.frame': 139 obs. of 4 variables:

#4# ..S abundance: num [1:139] 0 3.82 3.13 7.4 0

#4# ..$ class : Factor w/ 2 levels "O","1": 1 1 1 1111111

16

..S time : num [1:139] 21 22 28 0 35 6 42 49 56 63

#4 ..$ id : Factor w/ 12 levels "PM1","PMIO","PMI1",..: 1 1 1 1 1 1 1 1
S fit :'data.frame': 78 obs. of 3 variables:

#4# ..$ fit : num [1:78] 0.401 0.537 0.67 0.8 0.928

#4# ..S se : num [1:78] 1.078 1.015 0.96 0.912 0.87

#4# ..S timePoints: num [1:78] 0 1 2 3 4 5 6 7 8 9

S perm : num [1:10, 1] -2.18 -36.1 -84.33 1.5 88.5

S call : language fitSSTimeSeries (obj = obj, feature = feature, clas

For example, to test every class in the mouse dataset:

classes = unique (fData (mouseData) [, "class"])

timeSeriesFits = 1apply(classes,function(i){
fitTimeSeries (obj=mouseData,
feature=i,
class="status",
id="mouseID",
time="relativeTime",
lvl='class',
B=1) # This should be set to a higher value

3]

names (timeSeriesFits) = classes

Removing classes of bacteria without a potentially
Iinteresting time interval difference.
timeSeriesFits = sapply(timeSeriesFits, function(i){i[[1]]}) [-c(2,9,14)]

Correcting for multiple testing.

for (i in lzlength(timeSeriesFits)){
pvalues = timeSeriesFits[[1]]1[,4]
adjPvalues = p.adjust (pvalues, "bonferroni")
timeSeriesFits[[1]] = cbind(timeSeriesFits[[i]],adjPvalues)

Naming the various interesting time intervals.
for (i in l:length(timeSeriesFits)){
rownames (timeSeriesFits[[1]]) =

paste (
paste (names (timeSeriesFits) [1]," interval", sep=""),
l:nrow(timeSeriesFits[[i]]), sep=":"

Merging into a table.
timeSeriesFits = do.call (rbind, timeSeriesFits)
head (timeSeriesFits)

#4 Interval start Interval end Area
Bacteroidetes interval:l 18 20 6.430373
Bacteroidetes interval:2 22 72 -108.605663
Bacteroidetes interval:3 76 77 -1.445279

17

Unknown interval:1l 63 77 5.298119
Unknown interval:?2 0 22 -10.524746
Bacilli interval:l 21 77 472.291722
p.value adjPvalues

Bacteroidetes interval:1l 0
Bacteroidetes interval:2
Bacteroidetes interval:3
Unknown interval:1l

Unknown interval:?2

Bacilli interval:1

O O O O O
O O O O O O

Please see the help page for fitTimeSeries for parameters. Note, only two groups can be
compared to each other and the time parameter must be an actual value (currently no support
for posix, etc.).

4.2.1 Time series plotting
We can plot the difference function fit and time intervals of differential abundance using plotTimeSeries

and plotClassTimeSeries on the result. More plots will be updated in time.

par (mfrow = c(2, 1))

plotTimeSeries (res)

plotClassTimeSeries (res, pch = 21, bg = res$datasSclass, ylim = c (0,
8))

18

SS difference function prediction

(]
[&]
[<
©
g o -
>
o] AN —
©
s« -
8 o
[
e 1
£
o I I I I
0 20 40 60 80
Time
w_

Abundance
4
|

0 20 40 60 80

Time

4.3 Permutation test

Included is a standard permutation test similar to what was used in Metastats. Below we show
the fit for the same model as above using 10 permutations providing p-value resolution to the
tenth. The coef parameter refers to the coefficient of interest to test. Below we first generate
the list of significant features.

coeffOfInterest = 2
res = fitMeta (obj = lungTrim, mod = mod, useCSSoffset = FALSE, B = 10,
coef = coeffOfInterest)

adjustedPvalues = p.adjust (res$p, method = "fdr")

foldChange = abs (res$fitS$coef[, coeffOfInterest])

19

sigList = which (adjustedPvalues <= 0.05)
sigList = sigList[order (foldChange[sigList])]

head (taxa[sigList])

[1] "Prevotella salivae" "OTU_21302"
[3] "Prevotella sp. DJF_B116" "Streptococcus dysgalactiae"
[5] "Prevotella pallens" "Prevotella sp. DJF_B116"

4.4 Presence-absence testing

The hypothesis for the implemented presence-absence test is that the proportion/odds of a given
feature present is higher/lower among one group of individuals compared to another, and we
want to test whether any difference in the proportions observed is significant. We use Fisher’s
exact test to create a 2x2 contingency table and calculate p-values, odd’s ratios, and confidence
intervals. fitPA calculates the presence-absence for each organism and returns a table of p-
values, odd’s ratios, and confidence intervals. The function will accept either a MRexperiment
object or matrix. MRfulltable when sent a result of fitZig will also include the results of
fitPA.

classes = pData (mouseData) $diet
res = f£itPA (mouseData[l:5,], cl = classes)

head (res)

oddsRatio lower upper pvalues
Prevotellaceae:l Inf 0.01630496 Inf 1.0000000
Lachnospiraceae:l Inf 0.01630496 Inf 1.0000000
Unclassified-Screened:1 Inf 0.01630496 Inf 1.0000000
Clostridiales:1 0 0.00000000 24.77661 0.3884892
Clostridiales:2 Inf 0.01630496 Inf 1.0000000
adjPvalues

Prevotellaceae:l 1

Lachnospiraceae:l

Unclassified-Screened:1
Clostridiales:1

Clostridiales:2

I =

4.5 Discovery odds ratio testing

The hypothesis for the implemented discovery test is that the proportion of observed counts
for a feature of all counts are comparable between groups. We use Fisher’s exact test to create
a 2x2 contingency table and calculate p-values, odd’s ratios, and confidence intervals. £itDO
calculates the proportion of counts for each organism and returns a table of p-values, odd’s
ratios, and confidence intervals. The function will accept either a MRexperiment object or
matrix.

20

classes = pData (mouseData) Sdiet

res = £itDO (mouseDatal[l1:100,], cl =

head (res)

oddsRatio

Prevotellaceae:1l Inf

Lachnospiraceae:1 Inf

Unclassified-Screened:1 Inf

Clostridiales:1 0

Clostridiales:2 Inf

Firmicutes:1 0

#4# adjPvalues
Prevotellaceae:l 1.0000000
Lachnospiraceae:]l 1.0000000
Unclassified-Screened:1 1.0000000
Clostridiales:1 0.7470946
Clostridiales:2 1.0000000
Firmicutes:1 0.7470946

4.6 Feature correlations

classes, norm = FALSE,
lower upper
0.01630496 Inf 1
0.01630496 Inf 1
0.01630496 Inf 1
0.00000000 24.77661 0
0.01630496 Inf 1
0.00000000 24.77661 0

log =

pvalues

.0000000
.0000000
.0000000
.3884892
.0000000
.3884892

FALSE)

To test the correlations of abundance features, or samples, in a pairwise fashion we have imple-

mented correlationTest and correctIndices.

The correlationTest function will

calculate basic pearson, spearman, kendall correlation statistics for the rows of the input and
report the associated p-values. If a vector of length ncol(obj) it will also calculate the correlation

of each row with the associated vector.

cors = correlationTest (mouseData[55:60,], norm =
head (cors)

correlation
Clostridiales:11-Lachnospiraceae:35 -0.02205882
Clostridiales:11-Coprobacillus:3 -0.01701180
Clostridiales:1l-Lactobacillales:3 -0.01264304
Clostridiales:ll-Enterococcaceae:3 0.57315130
Clostridiales:1ll-Enterococcaceae:4 -0.01264304
Lachnospiraceae:35-Coprobacillus:3 0.24572606

Caution: http://www.ncbi.nlm.nih.gov/pubmed /23028285

21

FALSE,

w 0 = 0 0 J

log =

p

.96597%e-01
.424431e-01
.825644e-01
.663114e-13
.825644e-01
.548360e-03

FALSE)

5 Aggregating features

Normalization is recommended at the OTU level. However, functions are in place to aggregate
the count matrix (normalized or not), based on a particular user defined level. Using the feature-
Data information in the MRexperiment object, calling aggregateByTaxonomy or aggTax on
a MRexperiment object and declaring particular featureData column name (i.e. ’genus’) will
aggregate counts to the desired level with the aggfun function (default colSums). Possible aggfun
alternatives include colMeans and colMedians.

taxa = as.character (fData (mouseData) [, 11])

phylum = sapply (strsplit (taxa, split = ";"), function (i) {
i[2]

3]

obj = aggTax (MRcounts (mouseData), 1lvl = phylum, out = "matrix")
head (obj[1:5, 1:5])

PM1:20080107 PM1:20080108 PM1:20080114
Actinobacteria 0 3 2
Bacteroidetes 486 921 1103
Cyanobacteria 0 0 0
Firmicutes 455 922 1637
Proteobacteria 29 14 30
PM1:20071211 PM1:20080121
Actinobacteria 37 0
Bacteroidetes 607 818
Cyanobacteria 0 0
Firmicutes 772 1254
Proteobacteria 38 23

The aggregateByTaxonomy and aggTax functions are flexible enough to put in either
1) a matrix with a vector of labels or 2) a MRexperiment object with a vector of labels or
featureData column name. The function can also output either a matrix or MRexperiment
object.

22

6 Visualization of features

Visualizing metagenomic datasets can be very revealing. To help with the analysis metagenomeSeqg
has several plotting functions to gain insight of the dataset’s overall structure and particular
individual features. We include an shiny based interactive first exploration of the data through
the display function.

For an overall look at the dataset we provide a number of plots including heatmaps of
feature counts: plotMRheatmap, basic feature correlation structures: plotCorr, PCA/MDS
coordinates of samples or features: plotOrd, rarefaction effects: plotRare and contingency
table style plots: plotBubble.

Other plotting functions look at particular features such as the abundance for a single feature:
plotOTU and plotFeature, or of multiple features at once: plotGenus. Plotting multiple
OTUs with similar annotations allows for additional control of false discoveries.

6.1 Interactive Display

Due to recent advances in the interactiveDisplay package, calling the display function
on MRexperiment objects will bring up a browser to explore your data through several inter-
active visualizations. For more detailed interactive visualizations one might be interested in the
shiny-phyloseq package.

6.2 Structural overview

Many studies begin by comparing the abundance composition across sample or feature pheno-
types. Often a first step of data analysis is a heatmap, correlation or co-occurence plot or some
other data exploratory method. The following functions have been implemented to provide a
first step overview of the data:

1. plotMRheatmap - heatmap of abundance estimates (Fig. 4 right)
2. plotCorr - heatmap of pairwise correlations (Fig. 4 left)

3. plotOrd - PCA/CMDS components (Fig. 5 left)

4. plotRare - rarefaction effect (Fig. 5 right)

5. plotBubble - contingency table style plot (see help)

Each of the above can include phenotypic information in helping to explore the data.

Below we show an example of how to create a heatmap and hierarchical clustering of log,
transformed counts for the 200 OTUs with the largest overall variance. Red values indicate
counts close to zero. Row color labels indicate OTU taxonomic class; column color labels
indicate diet (green = high fat, yellow = low fat). Notice the samples cluster by diet in these
cases and there are obvious clusters. We then plot a correlation matrix for the same features.

23

Color Key Color Key

o ot
o Cot

02 46 8 12
Value

-1 0 05 1
Value

Figure 4: Left) Abundance heatmap (plotMRheatmap). Right) Correlation heatmap (plotCorr).

trials = pData (mouseData) $diet
heatmapColColors = brewer.pal (12, "Set3") [as.integer (factor(trials))]
heatmapCols = colorRampPalette (brewer.pal (9, "RdBu")) (50)

plotMRheatmap
plotMRheatmap (obj = mouseData, n = 200, cexRow = 0.4, cexCol = 0.4,

trace = "none", col = heatmapCols, ColSideColors = heatmapColColors)

plotCorr

plotCorr (obj = mouseData, n = 200, cexRow = 0.25, cexCol = 0.25, trace = "none",
dendrogram = "none", col = heatmapCols)

Below is an example of plotting CMDS plots of the data and the rarefaction effect at the
OTU level. None of the data is removed (we recommend removing outliers typically).

cl = factor (pData (mouseData) $diet)

plotOrd — can load vegan and set distfun = vegdist and use

dist.method='"'bray'

plotOrd (mouseData, tran = TRUE, usePCA
pch = 21)

FALSE, useDist = TRUE, bg = cl,

plotRare
res = plotRare (mouseData, cl = cl, ret

TRUE, pch = 21, bg = cl)

Linear fits for plotRare / legend

tmp = lapply (levels (cl), function(lv) Im(res[, "ident"] =~ res[, "libSize"] -
1, subset = cl == 1v))

for (i in l:length(levels(cl))) {
abline (tmp[[i]], col = 1)

}

24

o
N
. S 4
o] & ®
— .
.o .
. TN
. Lop t e ’.-.l ° 2
- . 0, & 5 o
~ ° °%. . . o o s 2 S8
z g &
E
5t
o o
S 2
8 s
% ° 8
o *, z v
= M g
< . €
! z
(=3
o o -
i . 5
e
L4
(=] .
<
! T T T T T T T T T T T
-20 -10 0 10 20 30 1000 2000 3000 4000 5000 6000
MDS component: 1 Depth of coverage

Figure 5: Left) CMDS of features (plotOrd). Right) Rarefaction effect (plotRare).

legend ("topleft", c("Diet 1", "Diet 2"), text.col = c¢(l, 2), box.col = NA)

6.3 Feature specific

Reads clustered with high similarity represent functional or taxonomic units. However, it is pos-
sible that reads from the same organism get clustered into multiple OTUs. Following differential
abundance analysis. It is important to confirm differential abundance. One way to limit false
positives is ensure that the feature is actually abundant (enough positive samples). Another
way is to plot the abundances of features similarly annotated.

1. plotOTU - abundances of a particular feature by group (Fig. 6 left)
2. plotGenus - abundances for several features similarly annotated by group (Fig. 6 right)

3. plotFeature - abundances of a particular feature by group (similar to plotOTU, Fig.
7)

Below we use plotOTU to plot the normalized log(cpt) of a specific OTU annotated as Neis-
seria meningitidis, in particular the 779th row of lungTrim’s count matrix. Using plotGenus
we plot the normalized log(cpt) of all OTUs annotated as Neisseria meningitidis.

It would appear that Neisseria meningitidis is differentially more abundant in nonsmokers.

head (MRtable (fit, coef = 2, taxa = l:length (fData (lungTrim) S$taxa)))

+samples in group 1 t+samples in group 0 counts in group 1
63 6 24 11
779 7 23 22
358 1 24 1
499 2 21 2
25 26 15 1893
928 11 2 91

25

counts in group 0 smokingStatusSmoker pvalues

63 1538 -4.031612 6.064532e-15
779 1512 -3.958899 1.617066e-14
358 390 -2.927686 1.869400e-12
499 326 -2.675306 8.705169e-10
25 162 2.575672 2.767250e-08
928 4 2.574172 1.382567e-37
adjPvalues
63 2.49616l1le-13
779 6.162817e-13
358 5.343369e-11
499 1.279660e-08
25 2.230904e-07
928 6.091832e-35
patients = sapply (strsplit (rownames (pData (lungTrim)), split = "_"),

function (i) {

i[3]
3]

pData (lungTrim) $Spatients patients
classIndex = list (smoker = which (pData (lungTrim)$SmokingStatus ==

"Smoker"))
classIndex$nonsmoker = which (pData (lungTrim) $SmokingStatus == "NonSmoker")
otu = 779
plotOTU
pPlotOTU (lungTrim, otu = otu, classIndex, main = "Neisseria meningitidis")

Now multiple OTUs annotated similarly
x = fData (lungTrim) $taxa[otu]
otulist = grep(x, fData(lungTrim) Staxa)

plotGenus
plotGenus (lungTrim, otulist, classIndex, labs

FALSE, main = "Neisseria meningi

lablist <- c("S", "NS")
axis(l, at = seq(l, 6, by

1), labels = rep(lablist, times = 3))

classIndex list (Western which (pData (mouseData) $diet == "Western"))
classIndex$BK = which (pData (mouseData) $diet == "BK")
otuIndex = 8770

par (mfrow=c(1,2))

dates = pData (mouseData) $date

plotFeature (mouseData, norm = FALSE, log = FALSE, otulIndex, classIndex,
col = dates, sortby = dates, ylab = "Raw reads")

26

Normalized log(cpt)

Raw reads

Neisseria meningitidis

.« .
.
. .
* .
. - ©
.
. "
.o
.
. ’a ©
)
. g
°
o . Q
. =
©
. g <
. S
z
. .
.
. o o~
®® o0 ° oo o) © @0 o000 o o
T T
smoker nonsmoker

Groups of comparison

Neisseria meningitidis

Groups of comparison

o o
o
oo
00
4 o o
o
o
°o
)
- o
o
o o o
o L]
s o
°
o °
s °
o “u
B
00
o ®o uc
o ° o
4 .%o R o o o
~ cmmmo @mamo om—o © wam wamon
T T T T T
S NS S NS NS

Figure 6: Left) Abundance plot (plotOTU). Right) Multiple OTU abundances (plotGenus).

200 300 400 500 600 700

100

Raw reads
200 300 400 500 600 700

100

o
T T T T T

10 20 30 40 50

Western

Figure 7: Plot of raw

27

0 20

abundances

40

BK

60

80

7 Summary

metagenomeSeq is specifically designed for sparse high-throughput sequencing experiments
that addresses the analysis of differential abundance for marker gene survey data. The package,
while designed for marker-gene survey datasets, may be appropriate for other sparse data sets
for which the zero-inflated Gaussian mixture model may apply. If you make use of the statis-
tical method please cite our paper. If you made use of the manual/software, please cite the
manual /software!

7.1 Citing metagenomeSeq

citation ("metagenomeSeq")

##

Please cite the top for the original statistical method
and normalization method implemented in metagenomeSeq and
the bottom for the software/vignette guide. Time series
analysis/function is described in the third citation.

##

JN Paulson, OC Stine, HC Bravo, M Pop. Differential

abundance analysis for microbial marker—-gene surveys.
#4# Nat Meth Accepted
#4

#4# JN Paulson, M Pop, HC Bravo. metagenomeSeq: Statistical
analysis for sparse high-throughput sequncing.

Bioconductor package: 1.8.3.

#4# http://cbcb.umnd.edu/software/metagenomeSeq

##
H Talukder, JN Paulson, HC Bravo. Finding regions of
interest in high throughput genomics data using

smoothing splines. Submitted

7.2 Session Info

sessionInfo ()

R version 3.1.2 (2014-10-31)
Platform: x86_64-unknown—-linux—gnu (64-bit)

##

locale:

44 [1] LC_CTYPE=en US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
44 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid parallel stats graphics grDevices utils

[7] datasets methods base

28

##
##
##
#4#
#4#
#4#
##
##
##
##
##
##
##
##
ik
#4#
##
##
##
##
##
##
##
##
##
##
#4#
##
##
##
##
##
##
##

other attached packages:

[1]

[3]
[3]
[7]

loaded via a namespace

(1]

w

O DD DD WwWwWwwwhNNNDNRE P e —
R O J 0 WkE O-J0 WkF OO0 WE OJ0wkRE ©Jdua
M0) D [N Cod L Ch h Cof o) Cn o [l Pod Codl P Ch 0 (of Bed 8 O n O

gss_2.1-4
RColorBrewer_ 1.1-2
limma_3.22.1
BiocGenerics_0.12.1

AnnotationDbi_1.28.1
DBI_0.3.1
GenomeInfoDb_1.2.4
KernSmooth_2.23-13
Matrix 1.1-4
R6_2.0.1
RJSONIO_1.3-0
Rcpp_0.11.3
XML_3.98-1.1
bitops_1.0-6
colorspace_1.2-4
evaluate_0.5.5
gdata_2.13.3
ggplot2_1.0.0
graph_1.44.1
gtable_0.1.2
highr_0.4
httpuv_1.3.2
lattice_0.20-29
mime_ 0.2
plyr_1.8.1
reshape2_1.4.1
shiny_0.10.2.2
stats4 _3.1.2
survival_2.37-7
xtable_1.7-4

29

metagenomeSeq_1.8.3
interactiveDisplay_1.4.0
Biobase_ _2.26.0

knitr 1.8

(and not attached) :

Category_2.32.0
GSEABase_1.28.0
IRanges_2.0.1
MASS_7.3-35
R.methodsS3 1.6.1
RBGL_1.42.0
RSQLite_1.0.0
S4Vectors_0.4.0
annotate 1.44.0
caTools_1.17.1
digest_0.6.6
formatR_1.0
genefilter_1.48.1
gplots_2.15.0
gridsSvG_1.4-2
gtools_3.4.1
htmltools_0.2.6
interactiveDisplayBase_1.4.0
matrixStats_0.12.2
munsell 0.4.2
proto_0.3-10
scales 0.2.4
splines_3.1.2
stringr_0.6.2
tools_3.1.2

8 Appendix

8.1 Appendix A: MRexperiment internals

The S4 class system in R allows for object oriented definitions. metagenomeSeqg makes use
of the Biobase package in Bioconductor and their virtual-class, eSet. Building off of eSet,
the main S4 class in metagenomeSeq is termed MRexperiment. MRexperiment is a simple
extension of eSet, adding a single slot, expSummary.

The experiment summary slot is a data frame that includes the depth of coverage and
the normalization factors for each sample. Future datasets can be formated as MRexperi-
ment objects and analyzed with relative ease. A MRexperiment object is created by calling
newMRexperiment, passing the counts, phenotype and feature data as parameters.

We do not include normalization factors or library size in the currently available slot specified
for the sample specific phenotype data. All matrices are organized in the assayData slot. All
phenotype data (disease status, age, etc.) is stored in phenoData and feature data (OTUs,
taxanomic assignment to varying levels, etc.) in featureData. Additional slots are available
for reproducibility and annotation.

8.2 Appendix B: Mathematical model

Defining the class comparison of interest as k(j) = I{j € groupA}. The zero-inflated model
is defined for the continuity-corrected log, of the count data y;; = logy(c;; + 1) as a mixture
of a point mass at zero I;p1(y;;) and a count distribution feount(¥ij; 4, 02) ~ N(ui,0?). Given
mixture parameters 7;, we have that the density of the zero-inflated Gaussian distribution for
feature 4, in sample j with S; total counts is:

Jig(yig; 0) = m5(S;) - Loy (yig) + (1 = m5(S5)) - feount (yis; 0) (1)

Maximume-likelihood estimates are approximated using an EM algorithm, where we treat
mixture membership A;; = 1 if y;; is generated from the zero point mass as latent indicator
variables [5]. We make use of an EM algorithm to account for the linear relationship between
sparsity and depth of coverage. The user can specify within the fitzig function a non-default
zero model that accounts for more than simply the depth of coverage (e.g. country, age, any
metadata associated with sparsity, etc.). See Figure 8 for the graphical model.

More information will be included later. For now, please see the online methods in:

http://www.nature.com/nmeth/journal /vaop/ncurrent /full/nmeth.2658. html

8.3 Appendix C: Calculating the proper percentile

To be included: an overview of the two methods implemented for the data driven percentile
calculation and more description below.

The choice of the appropriate quantile given is crucial for ensuring that the normalization
approach does not introduce normalization-related artifacts in the data. At a high level, the
count distribution of samples should all be roughly equivalent and independent of each other up
to this quantile under the assumption that, at this range, counts are derived from a common
distribution.

More information will be included later. For now, please see the online methods in:

http://www.nature.com/nmeth/journal/vaop /ncurrent /full /nmeth.2658.html

30

MxN

I @068

[N}

Figure 8: Graphical model. Green nodes represent observed variables: S; is the total number of reads in sample
j; k; the case-control status of sample j; and y;; the logged normalized counts for feature ¢ in sample j. Yellow
nodes represent counts obtained from each mixture component: counts come from either a spike-mass at zero,
y?j7 or the “count” distribution, y}j. Grey nodes b, bi1; and o? represent the estimated overall mean, fold-change
and variance of the count distribution component for feature i. ;, is the mixture proportion for sample j which
depends on sequencing depth via a linear model defined by parameters Sy and 1. The expected value of latent
indicator variables A;; give the posterior probability of a count being generated from a spike-mass at zero, i.e.
y?j. We assume M features and N samples.

31

References

[1] Emily S Charlson, Kyle Bittinger, Andrew R Haas, Ayannah S Fitzgerald, Ian Frank, Anjana
Yadav, Frederic D Bushman, and Ronald G Collman. Topographical continuity of bacterial
populations in the healthy human respiratory tract. American Journal of Respiratory and
Critical Care Medicine, 184, 2011.

[2] Peter J Turnbaugh, Vanessa K Ridaura, Jeremiah J Faith, Federico E Rey, Rob Knight, and
Jeffrey I Gordon. The effect of diet on the human gut microbiome: a metagenomic analysis
in humanized gnotobiotic mice. Science translational medicine, 1(6):6ral4, 2009.

[3] Consortium HMP. A framework for human microbiome research. Nature, 486(7402), 2012.

[4] Gordon K Smyth. Limma: linear models for microarray data. Number October. Springer,
2005.

[5] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society Series B Methodological, 39(1):1—
38, 1977.

32

	Introduction
	Data preparation
	Example datasets
	Loading count data
	Loading taxonomy
	Loading metadata
	Creating a MRexperiment object
	Useful commands

	Normalization
	Calculating normalization factors
	Exporting data

	Statistical testing
	Zero-inflated Gaussian mixture model
	Example using fitZig for differential abundance testing
	Multiple groups
	Exporting fits

	Time series analysis
	Time series plotting

	Permutation test
	Presence-absence testing
	Discovery odds ratio testing
	Feature correlations

	Aggregating features
	Visualization of features
	Interactive Display
	Structural overview
	Feature specific

	Summary
	Citing metagenomeSeq
	Session Info

	Appendix
	Appendix A: MRexperiment internals
	Appendix B: Mathematical model
	Appendix C: Calculating the proper percentile

